• 제목/요약/키워드: Modal Stiffness

검색결과 437건 처리시간 0.022초

Experimental study on identification of stiffness change in a concrete frame experiencing damage and retrofit

  • Zhou, X.T.;Ko, J.M.;Ni, Y.Q.
    • Structural Engineering and Mechanics
    • /
    • 제25권1호
    • /
    • pp.39-52
    • /
    • 2007
  • This paper describes an experimental study on structural health monitoring of a 1:3-scaled one-story concrete frame subjected to seismic damage and retrofit. The structure is tested on a shaking table by exerting successively enhanced earthquake excitations until severe damage, and then retrofitted using fiber-reinforced polymers (FRP). The modal properties of the tested structure at trifling, moderate, severe damage and strengthening stages are measured by subjecting it to a small-amplitude white-noise excitation after each earthquake attack. Making use of the measured global modal frequencies and a validated finite element model of the tested structure, a neural network method is developed to quantitatively identify the stiffness reduction due to damage and the stiffness enhancement due to strengthening. The identification results are compared with 'true' damage severities that are defined and determined based on visual inspection and local impact testing. It is shown that by the use of FRP retrofit, the stiffness of the severely damaged structure can be recovered to the level as in the trifling damage stage.

광학정반용 에폭시 접착제 개발을 위한 실험적 연구 (An Experimental Study for the Development of Epoxy Adhesives for Optical Top)

  • 길형균;윤석원;김광산
    • 한국소음진동공학회논문집
    • /
    • 제20권8호
    • /
    • pp.727-733
    • /
    • 2010
  • Optical tables provide a platform for the establishment and test of measurement systems which use Laser. Therefore, not only static characteristics such as surface flatness, static stiffness and etc. but dynamic response characteristics is very important design parameter. The dynamic stiffness is generally estimated through the modal test, and compliance is used as a representative performance standard. Recently there is an example of defining the dynamic deflection coefficient and using it as a new performance standard of the dynamic stiffness, but it is not generalized yet in industry. In this study, we verify the validity of existing DDC calculus by making an experiment on granite. And for improvement in damping performance of optical tables, we are going to evaluate the effect of fillers on the compliance, then develop an epoxy adhesive based on the result of this experiment.

동적 시스템의 감쇠행렬 추정 (Estimation of Damping Matrices for Dynamic Systems)

  • 이건명;김경주;주영호
    • 한국소음진동공학회논문집
    • /
    • 제19권10호
    • /
    • pp.1021-1027
    • /
    • 2009
  • Finite element models of dynamic systems can be updated in two stages. In the first stage, mass and stiffness matrices are updated neglecting damping. In the second stage, a damping matrix is estimated with the mass and stiffness matrices fixed. Methods to estimate a damping matrix for this purpose are proposed in this paper. For a system with proportional damping, a damping matrix is estimated using the modal parameters extracted from the measured responses and the modal matrix calculated from the mass and stiffness matrices from the first stage. For a system with non-proportional damping, a damping matrix is estimated from the impedance matrix which is the inverse of the FRF matrix. Only one low or one column of the FRF matrix is measured, and the remaining FRFs are synthesized to obtain a full FRF matrix. This procedure to obtain a full FRF matrix saves time and effort to measure FRFs.

Eigenvalue analysis of structures with flexible random connections

  • Matheu, E.E.;Suarez, L.E.
    • Structural Engineering and Mechanics
    • /
    • 제4권3호
    • /
    • pp.277-301
    • /
    • 1996
  • A finite element model of a beam element with flexible connections is used to investigate the effect of the randomness in the stiffness values on the modal properties of the structural system. The linear behavior of the connections is described by a set of random fixity factors. The element mass and stiffness matrices are function of these random parameters. The associated eigenvalue problem leads to eigenvalues and eigenvectors which are also random variables. A second order perturbation technique is used for the solution of this random eigenproblem. Closed form expressions for the 1st and 2nd order derivatives of the element matrices with respect to the fixity factors are presented. The mean and the variance of the eigenvalues and vibration modes are obtained in terms of these derivatives. Two numerical examples are presented and the results are validated with those obtained by a Monte-Carlo simulation. It is found that an almost linear statistical relation exists between the eigenproperties and the stiffness of the connections.

Preliminary Structural Design of Wall-Frame Systems for Optimum Torsional Response

  • Georgoussis, George K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권1호
    • /
    • pp.45-58
    • /
    • 2017
  • Recent investigations have pointed out that current code provisions specifying that the stiffness of reinforced concrete elements is strength independent, and therefore can be estimated prior to any strength assignment, is incorrect. A strength allocation strategy, suitable for preliminary structural design of medium height wall-frame dual systems, is presented for allocating strength in such buildings and estimating the dependable rigidities. The design process may be implemented by either the approximate continuous approach or the stiffness matrix method. It is based on the concept of the inelastic equivalent single-degree-of-freedom system which, the last few years, has been used to implement the performance based seismic design. The aforesaid strategy may also be used to determine structural configurations of minimum rotation distortion. It is shown that when the location of the modal centre of rigidity, as described in author's recent papers, is within a close distance from the mass axis the torsional response is mitigated. The methodology is illustrated in ten story building configurations, whose torsional response is examined under the ground motion of Kobe 1995, component KJM000.

머시닝 센터의 정${\cdot}$동강성 평가에 관한 연구 (A study on the Evaluation for the Static and Dynamic stiffness of a Machining Center)

  • 이춘만;박동근;임상헌
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.294-299
    • /
    • 2005
  • A machining center is a complex dynamic system whose behavior influences the machining stability and machined surface quality. This paper focused on establishment of a measurement system and experimental study on static, dynamic, and modal analysis of a machining center. The dynamic stiffness result by the analysis showed the weak part of the machining center. The results provided structure modification data for getting better dynamic behaviors.

  • PDF

Tailoring the second mode of Euler-Bernoulli beams: an analytical approach

  • Sarkar, Korak;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • 제51권5호
    • /
    • pp.773-792
    • /
    • 2014
  • In this paper, we study the inverse mode shape problem for an Euler-Bernoulli beam, using an analytical approach. The mass and stiffness variations are determined for a beam, having various boundary conditions, which has a prescribed polynomial second mode shape with an internal node. It is found that physically feasible rectangular cross-section beams which satisfy the inverse problem exist for a variety of boundary conditions. The effect of the location of the internal node on the mass and stiffness variations and on the deflection of the beam is studied. The derived functions are used to verify the p-version finite element code, for the cantilever boundary condition. The paper also presents the bounds on the location of the internal node, for a valid mass and stiffness variation, for any given boundary condition. The derived property variations, corresponding to a given mode shape and boundary condition, also provides a simple closed-form solution for a class of non-uniform Euler-Bernoulli beams. These closed-form solutions can also be used to check optimization algorithms proposed for modal tailoring.

압전세라믹을 이용한 지능 복합적층판의 강제진동의 능동제어 (Active Control of Forced Vibrations in Smart Laminated Composite Plates Using Piezoceramics)

  • 강영규;구근회;박현철
    • 한국소음진동공학회논문집
    • /
    • 제11권6호
    • /
    • pp.193-199
    • /
    • 2001
  • Active control of forced vibration of the cantilevered laminated composite plates using collocated piezoceramic sensor/actuator is analyzed numerically and verified experimentally for various fiber orientations. Impact on the stiffness and the damping properties is studied by varying stacking sequence of [$\theta$$_{4}$O$_{2}$90$_{2}$]s for the laminated composite plate. For the forced vibration control, the plate is excited by one pair of collocated PZT exciters in resonance and its vibrational response is suppressed by the other collocated PZT sensor/actuator using direct negative velocity feedback. It is shown that the active control of forced vibration is more effective for the smart laminated plate with higher modal damped stiffness(2ζ$\omega$/aup 2/) .

  • PDF

한 개의 크랙을 가진 회전하는 패킷 블레이드 시스템의 진동해석 (Modal Analysis of a Rotating Packet Blade System having a crack)

  • 권승민;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.266-271
    • /
    • 2009
  • A modeling method for the modal analysis of a multi-packet blade system having a crack undergoing rotational motion is presented in this paper. Each blade is assumed as a slender cantilever beam. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. Hybrid deformation variables are employed to derive the equations of motion. The flexibility due to crack, which is assumed to be open during the vibration, is calculated basing on a fracture mechanics theory. To obtain more general information, the equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters related to the angular speed, the depth and location of a crack on the modal characteristics of the system are investigated with some numerical examples.

  • PDF

튜브 타입 제진용 보링바 구조설계를 위한 GUI 프로그램 개발 (Development of a GUI Program for the Design of a Vibration Control Boring Bar with a Tube-Type Structure)

  • 곽양양;박종권;홍준희;송두상
    • 한국생산제조학회지
    • /
    • 제25권4호
    • /
    • pp.295-300
    • /
    • 2016
  • In the design of passive and active boring bars, the structural dimensions and shape of the vibration control boring bar are modified depending on the diameter and depth of the workpiece, which changes the dynamic behavior. Thus, the natural frequency, effective mass, and stiffness for the main structure of a tube-type boring bar need to be reset for each vibration control case. However, commercial finite element method (FEM) software and experimental modal analysis are mostly used at present despite being too time-consuming. To overcome the weaknesses of the two methods currently used for vibration control, we realized a graphical user interface (GUI) program for the modal analysis of a modified tube-type damping structure. The analysis results with the GUI program were compared to those with commercial FEM software in order to confirm the effectiveness of the former.