• Title/Summary/Keyword: Modal Interaction

Search Result 213, Processing Time 0.034 seconds

Modal analysis of perforated rectangular plates in contact with water

  • Jeong, Kyeong-Hoon;Ahn, Byung-Ki;Lee, Seong-Cheol
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.189-200
    • /
    • 2001
  • This paper presents an experimental modal analysis of perforated rectangular plates in air or in contact with water. The penetration of holes in the plates had a triangular pattern with P/D (pitch to diameter) 2.125, 2.500, 3.000 and 3.750. The plate was clamped along the plate edges by a number of bolts and nuts. The natural frequencies of the perforated plates in air were obtained by the analytical method based on the relation between the reference kinetic and maximum potential energies and compared with the experimental results. Good agreement between the results was found for the natural frequencies of the perforated plates in air. Additionally, it was empirically found that the natural frequencies of the perforated plate in air increase with an increase of P/D, on the other hand, the natural frequencies of the perforated plate in contact with water decrease with an increase of P/D.

Modal Analysis and Vibration Control of Smart Hull Structure (스마트 Hull 구조물의 모달 해석 및 진동 제어)

  • Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.299-304
    • /
    • 2008
  • Dynamic characteristics of smart hull structure are investigated and active vibration control performance is evaluated. Dynamic model of smart hull structure with surface bonded Macro-fiber Composite (MFC) actuators is established by analytical method. Equations of motion of the host hull structure are derived based on Donnell-Mushtari equilibrium equations for a thin cylindrical shell. A general model for the interaction between hull structure and MFC actuator is included in the dynamic model. Modal analysis is then conducted and mode shapes and corresponding natural frequencies are investigated. After constructing of the optimal control algorithm, active vibration control performance of the proposed system is evaluated. It has been shown that structural vibration can be reduced effectively with proper control input.

  • PDF

Modal Analysis and Vibration Control of Smart Hull Structure (스마트 Hull 구조물의 모달 해석 및 진동 제어)

  • Sohn, Jung-Woo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.832-840
    • /
    • 2008
  • Dynamic characteristics of smart hull structure are investigated and active vibration control performance is evaluated. Dynamic model of smart hull structure with surface bonded macro-fiber composite(MFC) actuators is established by analytical method. Equations of motion of the host hull structure are derived based on Donnell-Mushtari equilibrium equations for a thin cylindrical shell. A general model for the interaction between hull structure and MFC actuator is included in the dynamic model. Modal analysis is then conducted and mode shapes and corresponding natural frequencies are investigated. After constructing of the optimal control algorithm, active vibration control performance of the proposed system is evaluated. It has been shown that structural vibration can be reduced effectively with proper control input.

The First and Second Kinds of Total Impedances (제 1 종 및 제 2 종 평균 임피던스)

  • Kim, Sea-Moon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.351-356
    • /
    • 2000
  • Impedance is an inherent property that represents the relation between the excitation and motion of a system. It is not only gives the frequency characteristics of the system but also help us to understand an interaction with the other systems. If the impedance to be described is not with respect to a point but to a certain area, modal impedance must be used. However, it is highly dependent on modal functions and it is needed to know all information on the modal impedance to understand the whole characteristics. In this paper, two new types of impedances are introduced: the first and second kinds of total impedances. Their definitions certainly convey the implication that their properties are similar to the conventional impedance. With some limit checks and the simulations of several simple systems, we found that they are useful to describe the frequency characteristics of systems.

  • PDF

Large deformations of a flexural frame under nonlinear P-delta effects

  • Afshar, Dana;Afshar, Majid Amin
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.517-526
    • /
    • 2022
  • In this paper, nonlinear P-delta effects are studied on the seismic performance, and the modal responses of a flexural frame, considering large deformations. Using multiple scales method, the nonlinear differential equations of motion are estimated, and the nonlinear interactions between the frame's degrees of freedom are outcropped. The results of time and frequency domain analyzes of a dynamic model are examined under internal resonance cases, and the linear and nonlinear responses are investigated in each modal cases. Also, changing the modal responses with respect to the amplitude and frequency of the harmonic forces is evaluated. It is shown that the dominant absorption of energy is in the first natural frequency of the frame, in the case of earthquake excitation, and when a harmonic force is applied to the frame, the peaks of the frequency domain responses depending on the frequency of harmonic force are in the first, and second or third natural frequency of the structure.

Modal Test and Finite Element Model Update of Aircraft with High Aspect Ratio Wings (고세장비 항공기의 모드 시험 및 동특성 유한요소모델 개선)

  • Kim, Sang-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.480-488
    • /
    • 2012
  • The aircrafts with high aspect ratio wings made by a composite material have been developed, which enable high energy efficiency and long-term flight by reducing air resistance and structural weight. However, they have difficulties in securing the aeroelastic stability such as the flutter because of their long and flexible wings. The flutter is unstable self-excited-vibration caused by interaction between the structural dynamics and the aerodynamics. It should be verified analytically prior to first flight test that the flutter does not happen in the range of flight mission. Normally, the finite element model is used for the flutter analysis. So it is important to construct the finite element model representing dynamic characteristics similar to those of a real aircraft. Accordingly, in this research, to acquire dynamic characteristics experimentally the modal test of the aircraft with high aspect ratio composite wings was conducted. And then the modal parameters from the finite element analysis(FEA) were compared with those from the modal test. To make analysis results closer to test results, the finite element model was updated by means of the sensitivity analysis on variables and the optimization. Finally, it was proved that the updated finite element model is reliable as compared with the results of the modal test.

Collocated Wearable Interaction for Audio Book Application on Smartwatch and Hearables

  • Yoon, Hyoseok;Son, Jangmi
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.107-114
    • /
    • 2020
  • This paper proposes a wearable audio book application using two wearable devices, a smartwatch and a hearables. We review requirements of what could be a killer wearable application and design our application based on these elicited requirements. To distinguish our application, we present 7 scenarios and introduce several wearable interaction modalities. To show feasibility of our approach, we design and implement our proof-of-concept prototype on Android emulator as well as on a commercial smartwatch. We thoroughly address how different interaction modalities are designed and implemented in the Android platform. Lastly, we show latency of the multi-modal and alternative interaction modalities that can be gracefully handled in wearable audio application use cases.

Seismic Analysis of Rack Structure with Fluid-Structure Interaction (유체와 구조물의 연성을 고려한 rack 구조물의 내진해석)

  • Kim, S.J.;Lee, Y.S.;Ryu, C.H.;Yang, K.H.;Jung, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.465-470
    • /
    • 2001
  • In this study, the seismic analysis of rack structure with fluid-structure interaction is performed through use of the Finite Element Method(FEM) code ANSYS. Fluid-structure interaction can specify in terms of an hydrodynamic effect which is defined as the added mass per unit length divided by the area of the cross section. Using the Floor Response Spectrum(FRS) obtained through the time-history analysis, modal analysis and seismic analysis under Operating Basis Earthquake(OBE) and Safe Shutdown Earthquake(SSE) condition is carried out. The fluid-structure interaction effects on the rack structure are investigated.

  • PDF

Dynamic interaction analysis of submerged floating tunnel and vehicle (튜브형 수중교량의 교량-차량 동적상호작용 해석방법)

  • Kim, Moon-Young;Kwark, Jong-Won;Min, Dong-Ju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.83-88
    • /
    • 2013
  • The purpose of this study is to develop the algorithm for dynamic interaction analysis of submerged floating tunnel and vehicles. The dynamic behavior characteristic of submerged floating tunnel is certainly different with general structures, because the submerged floating tunnel is floating in the middle of water, and subjected to constant buoyance. Therefore the analyses in various aspects should be carried out to secure structural stability and practicality of structures. To conduct the dynamic interaction analysis, the structure is modeled by commercial FEM program ABAQUS to investigate modal characteristic. Also the added mass concept is applied to represent the inertial force by a fluid, and then dynamic interaction analyses are conducted with superposition method when the KTX is moving along the submerged floating tunnel. And the time histories are presented for vertical and lateral displacement at the center of the tunnel.

  • PDF