• Title/Summary/Keyword: Modal Data

Search Result 675, Processing Time 0.026 seconds

Model updating using the feedback exciter : The decision of sensor location & feedback gain (궤환 제어를 이용한 모델 개선법 : 측정 센서 위치와 궤환 이득값 설정)

  • 정훈상;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.802-807
    • /
    • 2002
  • The updating of FE model to match it with the experimental results needs the modal information. There are two cases where this methodology is ill-equip to deal with; under-determined and ill-conditioning problem. The feedback exciter that uses the summation of the white noise and the signals from the measurement sensors multiplied with feedback gains can deal with these problems as the new modal data from the closed loop system generate more constraints the updating parameters should obey. The new modal data from the closed loop system should be different to enhance the condition of the modal sensitivity matrix. In this research, a guide for the selection of the sensor locations and the decision of the corresponding output feedback gains is proposed. This method is based on the sensitivity of the modal data with respect to the feedback gains. Through the proper selection of the exciter and sensor locations and the feedback gain, the eigenvalue sensitivity of the updating parameters which cause the ill-conditioning of the modal sensitivity matrix can be modified and consequently the error contamination in updating parameters are reduced.

  • PDF

Damage detection in plates based on pattern search and Genetic algorithms

  • Ghodrati Amiri, G.;Seyed Razzaghi, S.A.;Bagheri, A.
    • Smart Structures and Systems
    • /
    • v.7 no.2
    • /
    • pp.117-132
    • /
    • 2011
  • This paper is aimed at presenting two methods on the basis of pattern search and genetic algorithms to detect and estimate damage in plates using the modal data of a damaged plate. The proposed methods determine the damages of plate structures using optimization of an objective function by pattern search and genetic algorithms. These methods have been applied to two numerical examples, namely four-fixed supported and cantilever plates with and without noise in the modal data and containing one or several damages. The obtained results clearly reveal that the proposed methods can be viewed as a powerful and reliable method for structural damage detection in plates using the modal data.

Gaussian mixture model for automated tracking of modal parameters of long-span bridge

  • Mao, Jian-Xiao;Wang, Hao;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.243-256
    • /
    • 2019
  • Determination of the most meaningful structural modes and gaining insight into how these modes evolve are important issues for long-term structural health monitoring of the long-span bridges. To address this issue, modal parameters identified throughout the life of the bridge need to be compared and linked with each other, which is the process of mode tracking. The modal frequencies for a long-span bridge are typically closely-spaced, sensitive to the environment (e.g., temperature, wind, traffic, etc.), which makes the automated tracking of modal parameters a difficult process, often requiring human intervention. Machine learning methods are well-suited for uncovering complex underlying relationships between processes and thus have the potential to realize accurate and automated modal tracking. In this study, Gaussian mixture model (GMM), a popular unsupervised machine learning method, is employed to automatically determine and update baseline modal properties from the identified unlabeled modal parameters. On this foundation, a new mode tracking method is proposed for automated mode tracking for long-span bridges. Firstly, a numerical example for a three-degree-of-freedom system is employed to validate the feasibility of using GMM to automatically determine the baseline modal properties. Subsequently, the field monitoring data of a long-span bridge are utilized to illustrate the practical usage of GMM for automated determination of the baseline list. Finally, the continuously monitoring bridge acceleration data during strong typhoon events are employed to validate the reliability of proposed method in tracking the changing modal parameters. Results show that the proposed method can automatically track the modal parameters in disastrous scenarios and provide valuable references for condition assessment of the bridge structure.

Modal identification of Canton Tower under uncertain environmental conditions

  • Ye, Xijun;Yan, Quansheng;Wang, Weifeng;Yu, Xiaolin
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.353-373
    • /
    • 2012
  • The instrumented Canton Tower is a 610 m high-rise structure, which has been considered as a benchmark problem for structural health monitoring (SHM) research. In this paper, an improved automatic modal identification method is presented based on a natural excitation technique in conjunction with the eigensystem realization algorithm (NExT/ERA). In the proposed modal identification method, damping ratio, consistent mode indicator from observability matrices (CMI_O) and modal amplitude coherence (MAC) are used as criteria to distinguish the physically true modes from spurious modes. Enhanced frequency domain decomposition (EFDD), the data-driven stochastic subspace identification method (SSI-DATA) and the proposed method are respectively applied to extract the modal parameters of the Canton Tower under different environmental conditions. Results of modal parameter identification based on output-only measurements are presented and discussed. User-selected parameters used in those methods are suggested and discussed. Furthermore, the effect of environmental conditions on the dynamic characteristics of Canton tower is investigated.

Output-only modal parameter identification of civil engineering structures

  • Ren, Wei-Xin;Zong, Zhou-Hong
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.429-444
    • /
    • 2004
  • The ambient vibration measurement is a kind of output data-only dynamic testing where the traffics and winds are used as agents responsible for natural or environmental excitation. Therefore an experimental modal analysis procedure for ambient vibration testing will need to base itself on output-only data. The modal analysis involving output-only measurements presents a challenge that requires the use of special modal identification technique, which can deal with very small magnitude of ambient vibration contaminated by noise. Two complementary modal analysis methods are implemented. They are rather simple peak picking (PP) method in frequency domain and more advanced stochastic subspace identification (SSI) method in time domain. This paper presents the application of ambient vibration testing and experimental modal analysis on large civil engineering structures. A 15 storey reinforced concrete shear core building and a concrete filled steel tubular arch bridge have been chosen as two case studies. The results have shown that both techniques can identify the frequencies effectively. The stochastic subspace identification technique can detect frequencies that may possibly be missed by the peak picking method and gives a more reasonable mode shapes in most cases.

Feedback Model Updating: Application to Indeterminate Structure (궤환 모델 개선법 : 부정정 구조물에의 적용)

  • 정훈상;박영진;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.59-64
    • /
    • 2003
  • The parameter modification of the initial FEM model to match it with the experimental results needs the modal information and the modal sensitivity matrix to the parameter change. There are two cases this methodology is ill-equip to deal with; the deficiency of the necessary modal information and the ill-conditioning of the sensitivity matrix. In this research, a novel concept of the feedback exciter that uses the summation of the white noise and the signals from the measurement sensors multiplied with feedback gains as the reference signal is proposed. There are 2 advantages using this external feedback excitation. First, we can use the change of the system response such as modal data by the active energy Path from the sensor to the exciter. This change of the system response can be additional clues to the system dynamics that we want to know. Secondly, the external energy Path alternates the offset of the Parameter change to the system response. That means the modal sensitivity of the parameters becomes different from the original sensitivities by the feedback excitation. Through the feedback loop, we can change the similar modal sensitivities of some updating parameters and consequently discriminate the parameters using the closed-loop modal data. To demonstrate the discrimination performance, the parameter estimation of an indeterminate structure by use of the feedback method is introduced.

  • PDF

Modal Testing of Mechanical Structures Subject to Operational Excitation Forces

  • Gade, Svend;Moller, Nis B.;Herlufsen, Henrik;Brincker, Rune;Andersen, Palle
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1162-1165
    • /
    • 2001
  • Operational Modal Analysis also known as Output Only Modal Analysis has in the recent years been used for extracting modal parameters of civil engineering structures and is now becoming popular for mechanical structures. The advantage of the method is that no artificial excitation need to be applied to the structure or force signals to be measured. All the parameter estimation is based upon the response signals, thereby minimising the work of preparation for the test. This test case is a controlled lab set-up enabling different parameter estimation methods techniques to be used and compared to the Operational Modal Analysis. For Operational Modal Analysis two different estimation techniques are used: a non-parametric technique based on Frequency Domain Decomposition (FDD), and a parametric technique working on the raw data in time domain, a data driven Stochastic Subspace Identification (SS!) algorithm. These are compared to other methods such as traditional Modal Analysis.

  • PDF

Model Analysis of Plate using by Digital Test System (디지털 실험장치를 이용한 판의 모우드 해석)

  • Hong, Bong-Ki;Bae, Dong-Myung;Bae, Seong-Yoeng
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.1
    • /
    • pp.39-55
    • /
    • 1993
  • Modal Analysis is the process of characterizing the dynamic properties of an elastic structure by identifying its modes of vibration. A mode of vibration is a global property of an elastic structure. That is, a mode has a specific natural frequency and damping factor which can be identified from response data at practically any point on a structure, and it has a characteristic mode shape which identifies the mode spatially over the entire structure. Modal testing is able to be performed on structural and mechanical structure in an effort to learn more about their elastic behavior. Once the dynamic properties of a structure are known its behavior can be predicted and therefore controlled or corrected. Resonant frequencies, damping factors and mode shape data can be used directly by a mechanical designer to pin point weak spots in a structure design, or this data can also be used to confirm or synthesize equations of motion for the elastic structure. These differential equations can be used to simulate structural response to know input forces and to examine the effects of pertubations in the distributed mass, stiffness and damping properties of the structure in more detail. In this paper the measurement of transfer functions in digital form, and the application of digital parameter identification techniques to identify modal parameters from the measured transfer function data are discussed. It is first shown that the transfer matrix, which is a complete dynamic model of an elastic plate structure can be written in terms of the structural modes of vibration. This special mathematical form allows one to identify the complete dynamics of the structure from a much reduced set of test data, and is the essence of the modal approach to identifying the dynamics of a structure. Finally, the application of transfer function models and identification techniques for obtaining modal parameters from the transfer function data are discussed. Characteristics on vibration response of elastic plate structure obtained from the dynamic analysis by Finite Element Method are compared with results of modal analysis.

  • PDF

A Time Domain Modal Parameter Estimation Method for Multiple Input-Output Systems (시간영역에서의 다중 입력-출력시스템의 모드매개변수 추정방법)

  • 이건명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1997-2004
    • /
    • 1994
  • A model analysis method has been developed in the paper. The method estimates the modal parameters of multiple input-output systems, assesses their quality, and seperates structural modes form computation ones. The modal parameter extraction algorithm is the least squares method with a finite difference model relating input and output time data. The quality of the estimated system model can be assessed in narrow frequency bands by comparing the measured and model predicted responses in time domain with the aid of digital filters. Structural modes can be effectively separated from computational ones using the convergence factor which represents the pole convergence rate. The modal analysis method has been applied to simulated and experimental vibration data to evaluate its utility and limitations.

Vibrational Characteristics of the Deteriorated Railway Plate Girder Bridge by Full-scale Experimental Modal Analysis (Full-scale 실험 모드해석을 이용한 노후화된 철도판형교의 진동특성)

  • Kim, Joo-Woo;Jung, Hie-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.119-128
    • /
    • 2012
  • In this study, experimental vibration tests are performed on a real full-scale railway steel plate girder bridge, which resides in open-space environments. Using experimental modal analysis techniques, the modal parameters of the railway steel plate girder bridge yielded by the modal testing of the impact hammer are compared and investigated with the natural frequencies and mode shapes obtained by finite element analysis. This work focuses on the application of model updating techniques to measured experimental data and output-only data from an analytical vibration study that takes into account various geometric and material properties of the bridge members. A finite element model of the railway bridge structure is used to verify the modal experimental results. It is subsequently updated using the corresponding modal identification technique. The basic database is provided to evaluate damage, which can be determined based on the changes in the element properties, resulting from the process of updating the finite element model benchmark and experimental data.