• 제목/요약/키워드: Modal Changes

검색결과 198건 처리시간 0.024초

김소희 『춘향가』의 전조에 따른 연행효과 분석 (Analysis on Modal Changes and Its Performance Effect in Kim, So-hui's 「Chunhyangga」)

  • 김숙자
    • 한국콘텐츠학회논문지
    • /
    • 제14권11호
    • /
    • pp.611-619
    • /
    • 2014
  • 본 연구는 만정 김소희 판소리"춘향가"의 중모리 대목 중 전조 기법과 연관된 연행효과를 밝히는 것이다. 만정제 "춘향가"는 특히 판소리의 전조를 통해 극적인 장면이나 배역의 변화, 감정선의 이동 등을 효과적으로 표현하였다. 중모리 중 <춘향이가 여짜오되>와 <스물치고> 두 곡을 고찰한 결과 다음과 같은 사실을 확인할 수 있었다. 전조가 일어나는 데에는 반드시 이면에 따라 역할과 극적전환, 상황변화, 그리고 감정의 변화가 반영되는 것을 알 수 있었다. 또한 두 곡의 전조는 모두 서로 근친조와 으뜸음조의 관계를 가지고 있었다. <춘향이가 여짜오되>는 전조 기법이 곡의 후반부에 집중적으로 쓰였으며, <스물치고>는 중간 지점부터 쓰이고 있다. 이 모두가 배역이 바뀌거나 해설하는 부분을 차별화하기 위하여 음악적으로 표현된 연행효과이다.

구조물 손상의 추정을 위한 Inverse Modal Perturbation 기법 (Estimation of Structural Damages by Inverse Modal Perturbation Method)

  • 민진기;김형기;홍규선;윤정방
    • 대한토목학회논문집
    • /
    • 제10권4호
    • /
    • pp.35-42
    • /
    • 1990
  • 구조물의 손상도를 Inverse Modal Perturbation 기법을 이용하여 추정하는 방법에 대하여 연구하였다. 손상된 구조물에 대하여 측정된, 제한된 수위 고유진동수와 고유진동모우드로 이루어진 Perturbation 식에 최적화기법을 적용하여, 손상된 구조물의 부재강성의 감소량을 추정하였다. 예제해석은 기둥모형과 트러스구조의 여러 가지 경우에 대하여 수행하였는데, 가정한 손상도에 따른 자유진동특성의 변화량을 바탕으로 측정한 손상도를 가정한 값과 비교하는 수치모의 실험방법을 통하여 본 기법의 효율성을 입증하였다.

  • PDF

Effects of local structural damage in a steel truss bridge on internal dynamic coupling and modal damping

  • Yamaguchi, Hiroki;Matsumoto, Yasunao;Yoshioka, Tsutomu
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.523-541
    • /
    • 2015
  • Structural health monitoring of steel truss bridge based on changes in modal properties was investigated in this study. Vibration measurements with five sensors were conducted at an existing Warren truss bridge with partial fractures in diagonal members before and after an emergency repair work. Modal properties identified by the Eigensystem Realization Algorithm showed evidences of increases in modal damping due to the damage in diagonal member. In order to understand the dynamic behavior of the bridge and possible mechanism of those increases in modal damping, theoretical modal analysis was conducted with three dimensional frame models. It was found that vibrations of the main truss could be coupled internally with local vibrations of diagonal members and the degree of coupling could change with structural changes in diagonal members. Additional vibration measurements with fifteen sensors were then conducted so as to understand the consistency of those theoretical findings with the actual dynamic behavior. Modal properties experimentally identified showed that the damping change caused by the damage in diagonal member described above could have occurred in a diagonal-coupled mode. The results in this study imply that damages in diagonal members could be detected from changes in modal damping of diagonal-coupled modes.

Vibration-based damage detection in beams using genetic algorithm

  • Kim, Jeong-Tae;Park, Jae-Hyung;Yoon, Han-Sam;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.263-280
    • /
    • 2007
  • In this paper, an improved GA-based damage detection algorithm using a set of combined modal features is proposed. Firstly, a new GA-based damage detection algorithm is formulated for beam-type structures. A schematic of the GA-based damage detection algorithm is designed and objective functions using several modal features are selected for the algorithm. Secondly, experimental modal tests are performed on free-free beams. Modal features such as natural frequency, mode shape, and modal strain energy are experimentally measured before and after damage in the test beams. Finally, damage detection exercises are performed on the test beam to evaluate the feasibility of the proposed method. Experimental results show that the damage detection is the most accurate when frequency changes combined with modal strain-energy changes are used as the modal features for the proposed method.

The application of modal filters for damage detection

  • Mendrok, Krzysztof;Uhl, Tadeusz
    • Smart Structures and Systems
    • /
    • 제6권2호
    • /
    • pp.115-133
    • /
    • 2010
  • A modal filter is a tool used to extract the modal coordinates of each individual mode from a system's output. This is achieved by mapping the response vector from the physical space to the modal space. It decomposes the system's responses into modal coordinates, and thus, on the output of the filter, the frequency response with only one peak corresponding to the natural frequency to which the filter was tuned can be obtained. As was shown in the paper (Deraemecker and Preumont 2006), structural modification (e.g. a drop in stiffness or mass due to damage) causes the appearance of spurious peaks on the output of the modal filter. A modal filter is, therefore, a great indicator of damage detection, with such advantages as low computational effort due to data reduction, ease of automation and lack of sensitivity to environmental changes. This paper presents the application of modal filters for the detection of stiffness changes. Two experiments were conducted: the first one using the simulation data obtained from the numerical 7DOF model, and the second one on the experimental data from a laboratory stand in 4 states of damage.

3D Cross-Modal Retrieval Using Noisy Center Loss and SimSiam for Small Batch Training

  • Yeon-Seung Choo;Boeun Kim;Hyun-Sik Kim;Yong-Suk Park
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권3호
    • /
    • pp.670-684
    • /
    • 2024
  • 3D Cross-Modal Retrieval (3DCMR) is a task that retrieves 3D objects regardless of modalities, such as images, meshes, and point clouds. One of the most prominent methods used for 3DCMR is the Cross-Modal Center Loss Function (CLF) which applies the conventional center loss strategy for 3D cross-modal search and retrieval. Since CLF is based on center loss, the center features in CLF are also susceptible to subtle changes in hyperparameters and external inferences. For instance, performance degradation is observed when the batch size is too small. Furthermore, the Mean Squared Error (MSE) used in CLF is unable to adapt to changes in batch size and is vulnerable to data variations that occur during actual inference due to the use of simple Euclidean distance between multi-modal features. To address the problems that arise from small batch training, we propose a Noisy Center Loss (NCL) method to estimate the optimal center features. In addition, we apply the simple Siamese representation learning method (SimSiam) during optimal center feature estimation to compare projected features, making the proposed method robust to changes in batch size and variations in data. As a result, the proposed approach demonstrates improved performance in ModelNet40 dataset compared to the conventional methods.

Detection of damage in truss structures using Simplified Dolphin Echolocation algorithm based on modal data

  • Kaveh, Ali;Vaez, Seyed Rohollah Hoseini;Hosseini, Pedram;Fallah, Narges
    • Smart Structures and Systems
    • /
    • 제18권5호
    • /
    • pp.983-1004
    • /
    • 2016
  • Nowadays, there are two classes of methods for damage detection in structures consisting of static and dynamic. The dynamic methods are based on studying the changes in structure's dynamic characteristics. The theoretical basis of this method is that damage causes changes in dynamic characteristics of structures. The dynamic methods are divided into two categories: signal based and modal based. The modal based methods utilize the modal properties consisting of natural frequencies, modal damping and mode shapes. As the modal properties are sensitive to changes in the structure, these can be used for detecting the damages. In this study, using dynamic method and modal based approach (natural frequencies and mode shapes), the objective function is formulated. Then, detection of damages of truss structures is addressed by using Simplified Dolphin Echolocation algorithm and solving inverse optimization problem. Many scenarios are used to simulate the damages. To demonstrate the ability of the algorithm, different truss structures with several multiple elements scenarios are tested using a few runs. The influence of the two different levels of noise in the modal data for these scenarios is also considered. The last example of this article is investigated using a different mutation. This mutation obtains the exact answer with fewer loops and population by limited computational effort.

Vibration-based delamination detection of composites using modal data and experience-based learning algorithm

  • Luo, Weili;Wang, Hui;Li, Yadong;Liang, Xing;Zheng, Tongyi
    • Steel and Composite Structures
    • /
    • 제42권5호
    • /
    • pp.685-697
    • /
    • 2022
  • In this paper, a vibration-based method using the change ratios of modal data and the experience-based learning algorithm is presented for quantifying the position, size, and interface layer of delamination in laminated composites. Three types of objective functions are examined and compared, including the ones using frequency changes only, mode shape changes only, and their combination. A fine three-dimensional FE model with constraint equations is utilized to extract modal data. A series of numerical experiments is carried out on an eight-layer quasi-isotropic symmetric (0/-45/45/90)s composited beam for investigating the influence of the objective function, the number of modal data, the noise level, and the optimization algorithms. Numerical results confirm that the frequency-and-mode-shape-changes-based technique yields excellent results in all the three delamination variables of the composites and the addition of mode shape information greatly improves the accuracy of interface layer prediction. Moreover, the EBL outperforms the other three state-of-the-art optimization algorithms for vibration-based delamination detection of composites. A laboratory test on six CFRP beams validates the frequency-and-mode-shape-changes-based technique and confirms again its superiority for delamination detection of composites.

진동특성치의 변화를 통한 교량의 손상발견 (Damage Detection in Highway Bridges Via Changes in Modal Parameters)

  • Kim, Jeong-Tae;Ryu, Yeon-Sun
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.87-94
    • /
    • 1995
  • In highway bridges robust damage detection exercises are mandatory to secure the safety of the structures from hostile environmental conditions such as fatigue earthquake, wind, and corrosion. This paper presents a damage detection practice in a full-scale highway bridge by utilizing modal response parameters of as-built and damaged states of the structure. first the test structure is described and modal testing procedures are outlined. Next, a damage detection model which yields information on the location of damage directly from changes in mode shapes is outlined. Finally, the damage detection model is implemented to predict the location of damage in the ten structure. From the results, it was found that the damage detection model accurately locates damage in the test structures for which modal parameters of only a single mode are available for pre-damage (as-built) and post-damage stages.

  • PDF

동특성 변화를 이용한 감쇠 구조물의 손상예측 (Prediction of the Damage in the Structure with Damping Using the Modified Dynamic Characteristics)

  • 이정윤
    • 한국소음진동공학회논문집
    • /
    • 제22권11호
    • /
    • pp.1144-1151
    • /
    • 2012
  • A damage in structure alters its dynamic characteristics. The change is characterized by changes in the modal parameter, i.e., modal frequencies, modal damping value and mode shape associated with each modal frequency. Changes also occur in some of the structural parameters; namely, the mass, damping, stiffness matrices of the structure. In this paper, evaluation of changes in stiffness matrix of a structure is presented as a method not only for identifying the presence of the damage but also locating the damage. It is shown that changed stiffness matrix can be accurately estimated a sensitivity coefficient matrix derived from modifying mode shapes, First, with 4 story shear structure models, the effect of presence of damage in a structure on its stiffness matrix is studied. By using these analytical model, the effectiveness of using change of stiffness matrix in detecting and locating damages is demonstrated. To validate the predicted changing stiffness and its location, the obtained results are compared to the reanalysis result which shows good agreement.