• Title/Summary/Keyword: Modal

Search Result 4,105, Processing Time 0.036 seconds

A Research of User Experience on Multi-Modal Interactive Digital Art

  • Qianqian Jiang;Jeanhun Chung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.80-85
    • /
    • 2024
  • The concept of single-modal digital art originated in the 20th century and has evolved through three key stages. Over time, digital art has transformed into multi-modal interaction, representing a new era in art forms. Based on multi-modal theory, this paper aims to explore the characteristics of interactive digital art in innovative art forms and its impact on user experience. Through an analysis of practical application of multi-modal interactive digital art, this study summarises the impact of creative models of digital art on the physical and mental aspects of user experience. In creating audio-visual-based art, multi-modal digital art should seamlessly incorporate sensory elements and leverage computer image processing technology. Focusing on user perception, emotional expression, and cultural communication, it strives to establish an immersive environment with user experience at its core. Future research, particularly with emerging technologies like Artificial Intelligence(AR) and Virtual Reality(VR), should not merely prioritize technology but aim for meaningful interaction. Through multi-modal interaction, digital art is poised to continually innovate, offering new possibilities and expanding the realm of interactive digital art.

Analysis of Experimental Modal Properties of an Electric Cabinet via a Forced Vibration Test Using a Shaker (가진기를 이용한 강제진동시험에 의한 전기 캐비닛의 실험적 모드특성 분석)

  • Cho, Sung-Gook;So, Gi-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.11-18
    • /
    • 2011
  • Accurate modal identification analysis is required to reasonably perform a seismic qualification of safety-related electric equipment installed in nuclear power plants (NPPs). This study evaluates a variation of the modal properties of an electric equipment cabinet structure in NPPs according to the excitation levels. For the study, an actual electric equipment cabinet was selected as a specimen and was dynamically tested by using a portable exciter in accordance with the level of input vibration energy. Tests were classified into two sets: with-door cases, and without-door cases. Frequency response functions were computed from the signals of the acceleration responses and input motions measured from the vibration tests. A polynomial curve fitting algorithm was used to extract the modal properties from the frequency response functions. This study reviews the variation of the modal properties according to the variation of the excitation levels. The results of the study show that the modal frequencies and the modal dampings of the object specimen varies nonlinearly according to the excitation level of the test motion. Attaching the door increases the modal damping of the cabinet.

Model Updating Method Based on Mode Decoupling Controller with Incomplete Modal Data (불완전 모달 정보를 이용한 모드 분리 제어기 기반의 모델 개선법)

  • Ha, Jae-Hoon;Park, Youn-Sik;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.963-966
    • /
    • 2005
  • Model updating method is known to the area to correct finite element models by the results of the experimental modal analysis. Most common methods in model updating depend on a parametric model of the structure. In this case, the number of parameters is normally smaller than that of modal data obtained from an experiment. In order to overcome this limitation, many researchers are trying to get modal data as many as possible to date. 1 want to name this method multiple modified-system generation method. These Methods consist of direct system modification method and feedback controller method. The direct system modification Is to add a mass or stiffness on the original structure or perturb the boundary conditions. The feedback controller method is to make the closed food system with sensor and actuator so as to get the closed loop modal data. In this paper, we need to focus on the feedback controller method because of its simplicity. Several methods related the feedback controller methods are virtual passive controller (VPC) sensitivity enhancement controller (SEC) and mode decoupling controller (MDC). Among them, we will apply MDC to the model updating problem. MDC has various advantages compared with other controllers, such as VPC and SEC. To begin with, only the target mode can be changed without changing modal property of non-target modes. In addition, it is possible to fix any modes if the number of sensors is equal to that of the system modes. Finally, the required control power to achieve desired change of target mode is always lower than those of other methods such as VPC. However, MDC can make the closed loop system unstable when using incomplete modal data. So we need to take action to avoid undesirable instability from incomplete modal data. In this paper, we address the method to design the unique and robust MDD obtained from incomplete modal data. The associated simulation will be Incorporated to demonstrate the usefulness of this method.

  • PDF

Modal parameter identification of tall buildings based on variational mode decomposition and energy separation

  • Kang Cai;Mingfeng Huang;Xiao Li;Haiwei Xu;Binbin Li;Chen Yang
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.445-460
    • /
    • 2023
  • Accurate estimation of modal parameters (i.e., natural frequency, damping ratio) of tall buildings is of great importance to their structural design, structural health monitoring, vibration control, and state assessment. Based on the combination of variational mode decomposition, smoothed discrete energy separation algorithm-1, and Half-cycle energy operator (VMD-SH), this paper presents a method for structural modal parameter estimation. The variational mode decomposition is proved to be effective and reliable for decomposing the mixed-signal with low frequencies and damping ratios, and the validity of both smoothed discrete energy separation algorithm-1 and Half-cycle energy operator in the modal identification of a single modal system is verified. By incorporating these techniques, the VMD-SH method is able to accurately identify and extract the various modes present in a signal, providing improved insights into its underlying structure and behavior. Subsequently, a numerical study of a four-story frame structure is conducted using the Newmark-β method, and it is found that the relative errors of natural frequency and damping ratio estimated by the presented method are much smaller than those by traditional methods, validating the effectiveness and accuracy of the combined method for the modal identification of the multi-modal system. Furthermore, the presented method is employed to estimate modal parameters of a full-scale tall building utilizing acceleration responses. The identified results verify the applicability and accuracy of the presented VMD-SH method in field measurements. The study demonstrates the effectiveness and robustness of the proposed VMD-SH method in accurately estimating modal parameters of tall buildings from acceleration response data.

Output only structural modal identification using matrix pencil method

  • Nagarajaiah, Satish;Chen, Bilei
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.4
    • /
    • pp.395-406
    • /
    • 2016
  • Modal parameter identification has received much attention recently for their usefulness in earthquake engineering, damage detection and structural health monitoring. The identification method based on Matrix Pencil technique is adopted in this paper to identify structural modal parameters, such as natural frequencies, damping ratios and modal shapes using impulse vibration responses. This method can also be applied to dynamic responses induced by stationary and white-noise inputs since the auto- and cross-correlation function of the two outputs has the same form as the impulse response dynamic functions. Matrix Pencil method is very robust to noise contained in the measurement data. It has a lower variance of estimates of the parameters of interest than the Polynomial Method, and is also computationally more efficient. The numerical simulation results show that this technique can identify modal parameters accurately even if the noise level is high.

Mode shape identification using response spectrum in experimental modal analysis

  • Babakhani, Behrouz;Rahami, Hossein;Mohammadi, Reza Karami
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.345-361
    • /
    • 2018
  • The set of processes performed to determine the dynamic characteristics of the constructed structures is named experimental modal analysis. Using experimental modal analysis and interpreting its results, structural failure can be assessed and then it would be possible to plan for their repair and maintenance. The purpose of the experimental modal analysis is to determine the resonance frequencies, mode shapes and Mode damping for the structure. Diverse methods for determining the shape of the mode by various researchers have been presented. There are pros and cons for each of these methods. This paper presents a method for determining the mode shape of the structures using the response spectrum in the experimental modal analysis. In the first part, the principles of the proposed method are described. Then, to check the accuracy of the results obtained from the proposed method, single and multiple degrees of freedom models were numerically and experimentally investigated.

Estimations of Offshore Structure Damages by Modal Perturbation Method (Modal-Perturbation 기법을 이용한 항만 구조물의 손상부위 추정)

  • 조병완;한상주
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.209-217
    • /
    • 1996
  • An Inverse modal perturbation method was applied to estimate the assessments of the damages at the large-scaled marine structure, such as pier or dolphin, from the structural dynamic natural frequencies and mode shape. Vibrations of structural stiffness, natural frequencies and mode shapes from the eigenvalue analysis lead to the modal peturbation equations, which were considered with a second order term. This paper estimates the assessments of the damages for the structure with the decreased stiffness and shows the convergence of perturbation equation.

  • PDF

The Improvements of Vehicle Vibration Characteristics Using Modal Contribution (모우드 기여도 분석을 이용한 차량의 진동특성 개선)

  • 안지훈;지상현;고병식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.51-56
    • /
    • 1998
  • This paper presents modal contribution method to reduce vehicle vibration. Normal mode analysis is performed to obtain modal vector matrix. The proposed method uses this modal vector matrix to evaluate forced response of an active mode to the applied engine forces and the rotating force due to wheel unbalance mass. Comparing the responses, of the specific active mode with one another, it can be easily done to determine most contributed mode in the interesting frequency band. Then we can find dominant bushes by the strain energy distribution of the mode. Vibration response is decrease with modification of those bushes.

  • PDF

Structural modal identification through ensemble empirical modal decomposition

  • Zhang, J.;Yan, R.Q.;Yang, C.Q.
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.123-134
    • /
    • 2013
  • Identifying structural modal parameters, especially those modes within high frequency range, from ambient data is still a challenging problem due to various kinds of uncertainty involved in vibration measurements. A procedure applying an ensemble empirical mode decomposition (EEMD) method is proposed for accurate and robust structural modal identification. In the proposed method, the EEMD process is first implemented to decompose the original ambient data to a set of intrinsic mode functions (IMFs), which are zero-mean time series with energy in narrow frequency bands. Subsequently, a Sub-PolyMAX method is performed in narrow frequency bands by using IMFs as primary data for structural modal identification. The merit of the proposed method is that it performs structural identification in narrow frequency bands (take IMFs as primary data), unlike the traditional method in the whole frequency space (take original measurements as primary data), thus it produces more accurate identification results. A numerical example and a multiple-span continuous steel bridge have been investigated to verify the effectiveness of the proposed method.

Modal Identification of a Slender Structure using the Proper Orthogonal Decomposition Method (Proper Orthogonal Decomposition 기법을 이용한 세장한 구조물의 모드인자 파악)

  • Ham, Hee-Jung
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.135-141
    • /
    • 2008
  • In this paper, the Proper Orthogonal Decomposition (POD) method, which is a statistical analysis technique to find the modal characteristics of a structure, is adapted to identify the modal parameters of a tall chimney structure. A wind force time history, which is applied to the structure, is obtained by a wind tunnel test of a scale down model. The POD method is applied on the wind force induced responses of the structure, and the true normal modes of the structure can be obtained. The modal parameters including, natural frequency, mode shape, damping ratio and kinetic energy of the structure can be estimated accurately. With these results, it may be concluded that the POD method can be applied to obtain accurate modal parameters from the wind-induced building responses.

  • PDF