• Title/Summary/Keyword: Mobilized peripheral blood

Search Result 4, Processing Time 0.02 seconds

Factors to Predict Successful Harvest during Autologous Peripheral Hematopoietic Stem Cell Collection

  • Kim, Mun-Ja;Jin, Soo-He;Lee, Duk-Hee;Park, Dae-Weon;Koh, Sung-Ae;Lee, Kyung-Hee;Hyun, Myung-Soo;Kim, Min-Kyoung
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.131-138
    • /
    • 2012
  • Autologous peripheral blood stem cell transplantation (PBSCT) has been used as a major treatment strategy for hematological malignancies. The number of CD34 positive cells in the harvested product is a very important factor for achieving successful transplantation. We studied the factors that can predict the number of CD34 positive cells in the harvested product of acute myelocytic leukemia (AML), multiple myeloma (MM) and Non-Hodgkin's lymphoma (NHL) patients after mobilizing them with chemotherapy plus G-CSF. A total of 73 patients (AML 19 patients, MM 28 patients, NHL 26 patients) with hematological malignancies had been mobilized with chemotherapy and granulocyte colony-stimulating growth factor from April, 2000 to February, 2012. Group's characteristics, checkup opinion of pre-peripheral blood on the day of harvest & outcome of PBSC were analyzed and evaluated using SPSS statistics program after grouping patients as below; group 1: CD34 cell counts < $2{\times}10^6/kg$ (n=16); group 2: $2{\times}10^6/kg{\leq}CD34$ cell counts < $6{\times}10^6/kg$ (n=32); group 3: CD34 cell counts ${\geq}6{\times}10^6/kg$ (n=25). We analyzed the clinical characteristics, the peripheral blood (PB) parameters and the number of CD34 positive cells in the PB and their correlation with the yield of CD34 positive cells collected from the mobilized patients. The total number of leukapheresis sessions was 263 (mean: 3.55 session per patient), and the mean number of harvested CD34 positive cells per patient was $7.37{\times}10^6/kg$. The number of CD34 positive cells in product was significantly correlated with the number of platelet and CD34 positive cells in peripheral blood (P<0.05). The number of PB CD34 positive cells was the best significant factor for the quantity of harvested CD34 positive cells on the linear regression analysis (P<0.05). Many factors could influence the mobilization of peripheral blood stem cells. Platelet count and PB CD34 positive cells count were the two variables which remained to be significant in multivariate analysis. Therefore, the number of platelet and CD34 positive cells in peripheral blood on the day of harvest can be used as an accurate predictor for successful peripheral blood stem cell collection.

Ex vivo Expansion and Clonal Maintenance of CD34+ Selected Cells from Cord Blood and Peripheral Blood (제대혈 및 말포혈로부터 분리한 CD34 양성 세포의 체외 증폭 및 클론 유지)

  • Kim, Soon Ki;Ghil, Hye Yoon;Song, Sun U.;Choi, Jong Weon;Park, Sang Kyu
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.8
    • /
    • pp.894-900
    • /
    • 2005
  • Purpose : Because of the unavailability of marrow transplantation, umbilical cord blood (CB) is increasingly being used. We evaluated the potential of ex vivo expansion and clonality in CD34+ cells separated from cord blood source and mobilized peripheral blood (PB) in a serum-free media. Methods : The CD34+ cells, selected from CB and mobilized PB, were expanded with hematopoietic growth factors. They were then cultured for burst-forming units of erythrocytes (BFU-E), colony-forming units of granulocytes and monocytes (CFU-GM) and colony-forming units of megakaryocytes (CFU-Mk) at culture days 0, day 4, day 7, and day 14 with various growth factors. Results : The CB-selected CD34+ cells showed significantly higher total cell expansion than those from the PB at day 7 (2 fold increase than PB). The CB-selected CD34+ cells produced more BFU-E colonies than did the PB on culture at days 7 and at day 14. Also, the CB-selected CD34+ cells produced more CFU-Mk colonies than did the PB on culture at day 4 and at day 7. Conclusion : The ex vivo expansion of the CB cells may be promising in producing total cellular expansion, CFU-Mk and BFU-E compared with PB for 7 to 14 days. The growth factors combination including megakaryocyte growth and development, flt3-ligand and interleukin-3 showed more expansion in the view of total cells and clonal maintenance compared with less combination.

Combined Effect of Granulocyte-Colony-Stimulating Factor-Induced Bone Marrow-Derived Stem Cells and Red Ginseng in Patients with Decompensated Liver Cirrhosis (Combined Effect of G-CSF and Red Ginseng in Liver Cirrhosis)

  • Kim, Hyun Hee;Kim, Seung Mo;Kim, Kyung Soon;Kwak, Min A;Kim, Sang Gyung;Kim, Byung Seok;Lee, Chang Hyeong
    • The Journal of Korean Medicine
    • /
    • v.37 no.4
    • /
    • pp.36-44
    • /
    • 2016
  • Objectives: Granulocyte-colony-stimulating factor (G-CSF) mobilized bone marrow (BM)-derived hematopoietic stem cells could contribute to improvement of liver function. In addition, liver fibrosis can reportedly be prevented by the Rg 1 component of red ginseng. This study investigated the combined effect of G-CSF and red ginseng on decompensated liver cirrhosis. Methods: Four patients with decompensated liver cirrhosis were injected with G-CSF to proliferate BM stem cells for 4 days ($5{\mu}g/kg$ bid subcutaneously) and followed-up for 3 months. The patients also received red ginseng for 4 days (2 tablets tid per os). We analyzed Child-Pugh scores, Model for End-Stage Liver Disease (MELD) scores and cirrhotic complications. Results: All patients showed marked increases in White blood cell (WBC) and CD34+ cells in the peripheral blood, with a peak time of 4 days after G-CSF injection. Spleen size also increased after G-CSF injection, but not severely. At end of the study, 2 patients showed improvement in Child-Pugh scores, hepatic encephalopathy, and refractory ascites. During the clinical trial period, none of the 4 patients showed any other adverse events or deterioration of liver function. Conclusions: We conclude that G-CSF/red ginseng combination therapy is relatively effective in improving liver function and major complications of decompensated liver cirrhosis without adverse effects. Further clinical trials are warranted to assess the clinical effects of G-CSF for decompensated liver cirrhosis.

Surface maker and gene expression of human adipose stromal cells growing under human serum. (인체혈청 하에서 배양한 인체지방기질줄기세포의 표면항원 및 유전자 발현)

  • Jun, Eun-Sook;Cho, Hyun-Hwa;Joo, Hye-Joon;Kim, Hoe-Kyu;Bae, Yong-Chan;Jung, Jin-Sup
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.678-686
    • /
    • 2007
  • Human mesenchymal stem cells(hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum(FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. Previously, we have shown that hADSC can be cultured in human serum(HS) during their isolation and expansion, and that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34 cells mobilized from bone marrow in NOD/SCID mice. In this study we determined whether hADSC grown in HS maintain surface markers expression similar with cells grown in FBS during culture expansion and compared gene expression profile by Affymetrix microarray. Flow cytometry analysis showed that HLA-DR, CD117, CD29 and CD44 expression in HS-cultured hADSC during culture expansion were similar with that in FBS-cultured cells. However, the gene expression profile in HS-cultured hADSC was significantly different from that in FBS-cultured cells. Therefore, these data indicated that HS-cultured hADSC should be used in vivo animal study of hADSC transplantation for direct extrapolation of preclinical data into clinical application.