• Title/Summary/Keyword: Mobility control

Search Result 997, Processing Time 0.034 seconds

Distributed Mobility Management Scheme for the Tactical Network (전술망을 위한 분산 이동성 관리 기법)

  • Kim, Yongsin;Sun, Kyoungjae;Kim, Younghan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1078-1087
    • /
    • 2014
  • In the conventional centralized mobility management schemes, it can lead to single points of failure, occurrence of a bottleneck, since all data and control are concentrated on the mobility anchor which is located in home network. In the current research of distributed mobility management, it is doing research into distributed mobility management which is supported by distributed mobility anchors. Such schemes do not consider a failure of the mobility anchor. However, it could be an issue under tactical environment since it occur non-service problem due to anchor movement, maintenance, failure, etc. In this paper, we proposed new DMM scheme named T-DMM(Tactical-Distributed Mobility Management) which can support handover even if mobility anchor breaks down. From the numerical analysis, we evaluate signaling cost and handover latency.

Mobility Improvement of a Jumping Robot using Conical Spring with Variable Length Endtip (가변길이 엔드팁을 갖는 원추형 스프링을 이용한 도약로봇의 이동성 향상)

  • Kim, Ki-Seok;Kim, Byeong-Sang;Song, Jae-Bok;Yim, Chung-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1108-1114
    • /
    • 2009
  • Mobility is one of the most important features for a guard robot since it should be operated in rough places. A wheel-based mobile robot capable of jumping is an appropriate structure for a guard robot because it can easily satisfy the requirements for small guard robots. The jumping robot can reach a higher place more rapidly than other locomotion methods. This research proposes a small robot equipped with the jumping mechanism based on the conical spring with the variable length endtip. The variable length endtip enables the independent control of the jump force and jump angle which are related to the jump height and jump distance, respectively. Various experiments demonstrated that the proposed jumping mechanism can provide the independent control of jump force and jump angle, and improve the mobility of a small robot to overcome an obstacle. Furthermore, a combination of the jumping mechanism and the PSD sensor to measure the distance to the step enable the jumping robot to autonomously climb stairs.

Development of Stable Ballbot with Omnidirectional Mobility (전방향 이동성을 갖는 안정한 볼봇 개발)

  • Park, JaeHan;Kim, SoonCheol;Yi, Sooyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • The ball-shaped mobile robot, so called ballbot has single point contact on ground and low energy consumption in motion because of the reduced friction. In this paper, a new ballbot is presented, which has omnidirectional mobile platform inside of it as a driving system. Thus the ballbat has omnidirectional mobility without nonholonomic constraints. Kinematics and inverse kinematics of the ballbat is derived also in this paper.

Performance Analysis of Error and Congestion Control Algorithm in Transport Layer Mobility Support Approach (트랜스포트 계층 이동성 지원 방안에서의 오류 및 혼잡제어 알고리즘 성능분석)

  • Jang, Moon-Jeong;Lee, Mee-Jeong
    • The KIPS Transactions:PartC
    • /
    • v.12C no.5 s.101
    • /
    • pp.733-740
    • /
    • 2005
  • In this paper, we propose an approach to transport layer mobility support leveraging the SCTP extension dubbed dynamic address reconfiguration in IPv6 networks. Timing issues related to the end-to-end address management, and a novel error recovery mechanism associated with a handover are discussed. The proposed error recovery mechanism is analyzed and compared to that of the plain SCTP to show that it reduces the handover latency and error recovery time.

Parameters for Min. Time and Optimal Control of Four-Legged Mobile Robot (4-족 이동로보트의 최소시간 최적제어를 위한 파라메터 연구)

  • 박성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.490-496
    • /
    • 1995
  • A four-legged mobile robot can move on the plain terrain with mobility and stability, but if there exist any obstacles on the terrain of the motion direction, it takes extra times for a mobile robot to cross those obstacles and the stability should be considered during motion. The main objevtive is the study of a quadruped which can cross obstacles with better mobility, stability and fuel economy than any other wheeled or tracked vehicles. Vertical step, isolated wall and ditch are the basic obstacles and by understanding those three cases perfectly, a quadruped can move on any mixed rough terrain as 4-legged animal moves. Each leg of a determine the crossing capability in a static analysis. A quadruped can be simplified with links and joints. By applying the research method, a quadruped can determine the control procedures as soon as it receives the terrain informations from scanner and finally can be moved as animals move with mobility and stability.

  • PDF

Analysis of Acceleration Bounds and Mobility for Multiple Robot Systems Based on Null Space Analysis Method (영 공간 분해 방법을 이용한 다중 협동로봇의 모빌리티와 가속도 조작성 해석)

  • Lee Fill-Youb;Jun Bong-Huan;Lee Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.497-504
    • /
    • 2006
  • This paper presents a new technique that derives the dynamic acceleration bounds of multiple cooperating robot systems from given individual torque limits of robots. A set of linear algebraic homogeneous equation is derived from the dynamic equations of multiple robots with friction contacts. The mobility of the robot system is analyzed by the decomposition of the null space of the linear algebraic equation. The acceleration bounds of multiple robot systems are obtained from the joint torque constraints of robots by the medium of the decomposed null space. As the joint constraints of the robots are given in the infinite norm sense, the resultant acceleration bounds of the systems are described as polytopes. Several case studies are presented to validate the proposed method in this paper.

Autonomous Navigation System for Power Wheelchair System

  • Jung, Moon-Shu;Ahn, Seong-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • The power wheelchair is an important and convenient mobility device. The demand of power wheelchair is increasing for assistance in mobility. In this paper we proposed a robotic wheelchair for mobility aid to reduce the burden from the disabled. The main issue in an autonomous wheelchair is the automatic detection and avoidance of obstacles and going to the pre-designated place. The proposed algorithm detects the obstacles and avoids them to drive the wheelchair to the desired place safely with panning scan from sensors of distance measurement and fuzzy control. By this way, the disabled will not always have to worry about paying deep attention to the surroundings and his path.

  • PDF

A Fault-tolerant Network-based Mobility Management Scheme for Supporting Multi-media Services (방통융합 멀티미디어 서비스를 제공하기 위한 안정된 네트워크 기반의 이동성 관리 기술)

  • Lee, Sung-Kuen;Lee, Kyoung-Hee;Hong, Kang-Woon;Um, Tai-Won;Lee, Hyun-Woo;Ryu, Won;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3B
    • /
    • pp.526-535
    • /
    • 2010
  • In this paper, we propose the fault-tolerant network-based mobility management scheme for supporting multimedia services of broadcasting & communications convergence in fixed mobile convergence (FMC) networks. The proposed scheme is based on AIMS (Access Independent Mobility Service) which is developed for the mobility support among heterogeneous access networks. To support stable location management and handover control for a MN, the proposed scheme supports stable management of binding information by sensing network attachment and detachment of a mobile node (MN). In addition, the proposed fault-tolerant (FT) AIMS supports a function of message retransmission for the support of handover control message and a function of heartbeat message transmission for the support of stable access network environments to a mobile node. We evaluate and analyze the performance of the proposed scheme through the implementation of AIMS system test-bed.

A Control Platform Scheme for Seamless Service Provisioning During Handover on FMC Networks (유무선 통합망에서 핸드오버시 끊김없는 서비스 제공을 위한 제어 플랫품)

  • Maeng, Doo-Lyel;Park, Jong-Kae;Kim, Sung-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9B
    • /
    • pp.857-866
    • /
    • 2009
  • Recently, IP mobility study of infra's common elements is undergoing processes to achieve FMC based on All-IP. Existing typical mobility technology based on IP is IETF's Mobile IP. However, it faced to limitations due to packet loss, delays when MN is moving on Mobile IP, also existing network infra - routers (FA)-needed to add/change the functions to support Mobile IP. In this paper, existing mobility problems based on IP and the suggested improvements for platforms which support mobility, quality, security are proposed. It discusses the performance on the current existing IP infrastructure derived from simulation analysis on mobility packet loss and delay. From the resulting data, improvements will also be outlined for optimal performance.

Effects of Thoracic and Hip Joint Mobility Exercise and Lumbar Stability Exercise on Pain and Balance in Women with Chronic Back Pain (등뼈와 엉덩관절 가동성운동을 겸한 허리 안정성 운동이 만성 허리통증 여성 환자들의 통증과 균형에 미치는 영향)

  • Yun-kyung Choi;Yong-min Kim
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.29 no.2
    • /
    • pp.1-10
    • /
    • 2023
  • Background: The purpose of this study was to evaluate the pain, static balance, and dynamic balance abilities of women with chronic low back pain by performing thoracic and hip joint mobility exercises and lumbar stability exercises. Methods: The subjects of this study were 20 adult women with low back pain who lived in C city for more than 12 weeks. The experimental group performed the thoracic and hip mobility exercises with lumbar stability exercises and the control group performed the lumbar stability exercise with general exercise program. Both groups participated in the exercise program three times a week for six weeks, from December 20, 2022 to March 7, 2023. The balance ability were measured using BT4, and pain was measured using visual analog scale (VAS). The collected data were analyzed by independent sample t-test and paired t-test using SPSS version 23.0 program. Results: After 6 weeks of intervention, there was a significant change in VAS between the experimental group and the control group, and there was no difference between the two groups (p>.05). In the case of balance ability, there was a no significant increase in the experimental group (p>.05). Conclusion: Thoracic and hip joint mobility exercises and lumbar stability exercises for adult female patients with chronic low back pain may be partially effective in static balance and dynamic balance.

  • PDF