• Title/Summary/Keyword: Mobility Simulation

Search Result 814, Processing Time 0.028 seconds

Predicting Maximum Traction for Improving Traversability of Unmanned Robots on Rough Terrain (무인 로봇의 효율적 야지 주행을 위한 최대 구동력 추정)

  • Kim, Ja-Young;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.940-946
    • /
    • 2012
  • This paper proposes a method to predict maximum traction for unmanned robots on rough terrain in order to improve traversability. For a traction prediction, we use a friction-slip model based on modified Brixius model derived empirically in terramechanics which is a function of mobility number $B_n$ and slip ratio S. A friction-slip model includes characteristics of various rough terrains where robots are operated such as soil, sandy soil and grass-covered soil. Using a friction-slip model, we build a prediction model for terrain parameters on which we can know maximum static friction and optimal slip with respect to mobility number $B_n$. In this paper, Mobility number $B_n$ is estimated by modified Willoughby Sinkage model which is a function of sinkage z and slip ratio S. Therefore, if sinkage z and slip ratio are measured once by sensors such as a laser sensor and a velocity sensor, then mobility number $B_n$ is estimated and maximum traction is predicted through a prediction model for terrain parameters. Estimation results for maximum traction are shown on simulation using MATLAB. Prediction Performance for maximum traction of various terrains is evaluated as high accuracy by analyzing estimation errors.

Fast Mobility Management Method Using Multi-Casting Tunneling in Heterogeneous Wireless Networks (이기종 무선 네트워크에서 멀티 캐스팅 터널링을 이용한 이동성 관리 방법)

  • Chun, Seung-Man;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.69-77
    • /
    • 2010
  • This paper presents a fast IP mobility management scheme in heterogeneous networks using the multiple wireless network interlaces. More specifically, in order to minimize the packet loss and handover latency due to handover, the E-HMIPv6, IETF HMIPv6 has been extended, is presented where the multiple tunnels between E-MAP and mobile node are dynamically constructed. E-HMIPv6 is composed of the extension of IETF HMIPv6 MAP, handover procedure, and simultaneous multiple tunnels. In order to demonstrate superior to the proposed method, the NS-2 simulation has done for performance evaluation of TCP and UDP-based application comparison with the existing mobility management method.

FADA: A fuzzy anomaly detection algorithm for MANETs (모바일 애드-혹 망을 위한 퍼지 비정상 행위 탐지 알고리즘)

  • Bae, Ihn-Han
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1125-1136
    • /
    • 2010
  • Lately there exist increasing demands for online abnormality monitoring over trajectory stream, which are obtained from moving object tracking devices. This problem is challenging due to the requirement of high speed data processing within limited space cost. In this paper, we present a FADA (Fuzzy Anomaly Detection Algorithm) which constructs normal profile by computing mobility feature information from the GPS (Global Positioning System) logs of mobile devices in MANETs (Mobile Ad-hoc Networks), computes a fuzzy dissimilarity between the current mobility feature information of the mobile device and the mobility feature information in the normal profile, and detects effectively the anomaly behaviors of mobile devices on the basis of the computed fuzzy dissimilarity. The performance of proposed FADA is evaluated through simulation.

A Hand-off Technique Using Mobility Pattern in Mobile Internet (모바일 인터넷에서 이동성 패턴을 이용한 핸드오프 기법)

  • Kim, Hwang-Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.919-925
    • /
    • 2006
  • Mobile IPv6 generates the loss of packets and out of sequencing when hand off, In this paper, We propose a improved hand off techniques using the mobility pattern of mobile nodes. As making group by presetting the moving range of mobile nodes, and putting buffer server in the group, the packet loss and out of packet sequence can be reduced. The proposed method prevents the out of packet sequence in If level which can be happened in the stable state, minimizes the packet re-send in TCP level. In the simulation, the proposed hand off techniques transmits packets efficiently by using the mobility pattern of mobile nodes.

  • PDF

Design and Evaluation of a New Multicast Protocol in Large Micro-Mobility Environments (대규모 마이크로 모빌리티 환경에서의 멀티캐스트 프로토콜의 구현과 평가)

  • Kang, Ho-Seok;Shim, Young-Chul
    • The KIPS Transactions:PartC
    • /
    • v.15C no.1
    • /
    • pp.51-60
    • /
    • 2008
  • Micro-mobility protocols have been developed to reduce the control message overhead due to movements of mobile nodes. With the spread of mobile devices, services using mobile nodes are increasing and multicast services are becoming more important in providing multimedia services. In this paper we propose a new multicast protocol suitable for micro-mobility environments. The proposed protocol is designed to maintain optimal multicast routing paths and continue to provide multicast services without disruption in spite of frequent handoffs due to movements of mobile nodes. We used simulation to evaluate the proposed protocol, compared its performance with existing multicast protocols for mobile environments including bi-directional tunneling, remote subscription, and MMA, and observed that the proposed protocol exhibited better performance in terms of transmission success ratio and overhead on the network.

Mobility Management Method for Constrained Sensor Nodes in WoT Environment (WoT 환경에서 제한된 센서 노드의 이동성 관리 방법)

  • Chun, Seung-Man;Ge, Shu-Yuan;Park, Jong-Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.11-20
    • /
    • 2014
  • For Web-based applications in IoT environment, IETF CoRE WG has standardizing the CoAP. One of limitations of CoAP is that CoAP standard does not consider the mobility management of the CoAP sensor node. In this paper, we propose the mobility management protocol of CoAP sensor node by considering the characteristics of the constrained network. The proposed mobility management protocol supports for Web client to be transmitted the sensing data from CoAP node reliably while the CoAP sensor moves into different wireless networks. To do this, we designed the architecture with the separate IP address management of CoAP sensor node and presented the mobility management protocol, which includes the holding and binding mode, in order to provide the reliable transmission. Finally, the numerical analysis and simulation with NS2 tool have been done for the performance evaluation in terms of the handover latency and packet loss with comparing the proposed mobility management protocol with other the existing mobility management protocols. The performance result shows that the proposed mobility management can provide the transmission of sensing data without the packet loss comparing with the existing mobility management protocol reliably.

An Implementation of the Mobile Communication Simulator using a Object-Oriented Simulation Platform (객체지향적 시뮬레이션플랫폼을 이용한 이동통신 시뮬레이션 구현)

  • Yoon, Young-Hyun;Kim, Sang-Bok;Lee, Jeong-Bae
    • The KIPS Transactions:PartC
    • /
    • v.11C no.5
    • /
    • pp.613-620
    • /
    • 2004
  • Traditionally, simulation method was used to test and evaluate the performance of communication protocol or functional elements for mobile communication service. In this Paper, PCSsim(Personal Communication System Simulator) was realized that can evaluate and review the call process of mobile communication service or to predict its performance by using the object-oriented simulation platform. PCSsim can simulate the base station and mobile host by considering the user's mobility, call generation rate and call duration time. In this paper, based on the simulation, presented the simulation results of hand-off generation ratio according to call generation, user's moving speed and call duration time both in residence area and commercial area, and it was confirmed that the hand-off rates in simulation and actual service environment have similar features. PCSsim can be used in adjusting the characteristics of base station fellowing the dynamic hand-off buffering or the characteristics of user's call in the design stage, and also can be used in building new mobile communication network by reflecting the characteristics of region where the base station is located and the mobility of the user.

An End-to-End Mobility Support Mechanism based on mSCTP (mSCTP를 이용한 종단간 이동성 지원 방안)

  • 장문정;이미정;고석주
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.4
    • /
    • pp.393-404
    • /
    • 2004
  • Recently, mSCTP (Mobile SCTP) has been proposed as a transport layer approach for supporting mobility. mSCTP is based on the ‘multi-homing’ feature of Stream Control Transmission Protocol(SCTP), and utilize the functions to dynamically add or delete IP addresses of end points to or from the existing connectionin order to support mobility. In this paper, we propose a mechanism to determine when to add or delete an W address, utilizing the link layer radio signal strength information in order to enhance the performance of mSCTP We also propose a mechanism for a mobile node to initiate the change of data delivery path based on link layer radio signal strength information. In addition, if it takes long time to acquire new data path, we propose an approach for reducing handover latency. The simulation results show that the performance of proposed transport layer mobility support mechanism is competitive compared to the traditional network layer mobility supporting approach. Especially, when the moving speed of mobile node is fast, it shows better performance than the traditional network layer approaches.

Performance Analysis of Improved ZMHB Algorithms for Wireless Networks (무선망에서 개선된 ZMHB 알고리즘의 성능 평가)

  • Kwon, Se-Dong;Park, Hyun-Min;Lee, Kang-Sun
    • The KIPS Transactions:PartC
    • /
    • v.11C no.5
    • /
    • pp.659-670
    • /
    • 2004
  • Handoff is one of the most important features for the user's mobility in a wireless cellular communication system. It is related to resource reservation at nearby cells. Resource reservation to the new connection point should occur prior to handoff to enable the user to receive the data or services at the new location, at the same level of service as at the previous location. For the efficient resource reservation, mobility prediction has been reported as an effective means to decrease the call dropping probability and to shorten the handoff latency in a wireless cellular environment. A recently proposed algorithm, ZMHB, makes use of the history of the user's positions within the current cell to predict the next cell. But, the prediction of the ZMHB algorithm is found to be 80∼85% accurate for regular and random movements. In this paper, we propose a new improved ZMHB mobility prediction algorithm, which is called Detailed-ZMHB that uses detailed-zone-based tracking of mo-bile users to predict user movements. The effectiveness of the proposed algorithm is then demonstrated through a simulation.

ERPM: An Entropy-based Routing Protocol using Mobility in Mobile Ad-hoc Wireless Networks (ERPM: 모바일 Ad-hoc 무선 네트워크에서 이동성을 이용한 엔트로피 기반 라우팅 프로토콜)

  • An, Beong-Ku;Lee, Joo-Sang
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.6
    • /
    • pp.17-24
    • /
    • 2011
  • In this paper, we propose an Entropy-based Routing Protocol using Mobility (ERPM) for supporting ubiquitous convergence services efficiently in mobile ad-hoc wireless networks. The main features that the ERPM introduces to obtain the goals can be summarized as follows. First, ERPM can construct stable routing routes based on the entropy concepts using mobility of nodes. Second, ERPM can quantitatively evaluate the stability of route by entropy concepts using mobility of nodes. Third, ERPM can select the most stable route in the view points of mobility of routes between a source node and a destination node, where multiple paths are available. The performance evaluation of the proposed ERPM performed via simulation using OPNET and analysis shows that the ERPM can support the construction of stable routing routes and increase the transmission ratio of data efficiently.