• Title/Summary/Keyword: Mobility Management Scheme

Search Result 241, Processing Time 0.023 seconds

A Robust Mobile Video Streaming in Heterogeneous Emerging Wireless Systems

  • Oh, Hayoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2118-2135
    • /
    • 2012
  • With the rapid development of heterogeneous emerging wireless technologies and numerous types of mobile devices, the need to support robust mobile video streaming based on the seamless handover in Future Internet is growing. To support the seamless handover, several IP-based mobility management protocols such as Mobile IPv6 (MIPv6), fast handover for the MIPv6 (FMIPv6), Hierarchical MIPv6 (HMIPv6) and Proxy Mobile IPv6 (PMIPv6) were developed. However, MIPv6 depreciates the Quality-of-Service (QoS) and FMIPv6 is not robust for the video services in heterogeneous emerging wireless networks when the Mobile Node (MN) may move to another visited network in contrast with its anticipation. In Future Internet, the possibility of mobile video service failure is more increased because mobile users consisting of multiple wireless network interfaces (WNICs) can frequently change the access networks according to their mobility in heterogeneous wireless access networks such as 3Generation (3G), Wireless Fidelity (Wi-Fi), Worldwide Interoperability for Microwave Access (WiMax) and Bluetooth co-existed. And in this environment, seamless mobility is coupled according to user preferences, enabling mobile users to be "Always Best Connected" (ABC) so that Quality of Experience is optimised and maintained. Even though HMIPv6 and PMIPv6 are proposed for the location management, handover latency enhancement, they still have limit of local mobility region. In this paper, we propose a robust mobile video streaming in Heterogeneous Emerging Wireless Systems. In the proposed scheme, the MN selects the best-according to an appropriate metric-wireless technology for a robust video streaming service among all wireless technologies by reducing the handover latency and initiation time when handover may fail. Through performance evaluation, we show that our scheme provides more robust mechanism than other schemes.

Dynamic Location Area Management Scheme Based on Mobile Subscribers in Cellular Mobile System (셀룰라 이동 통신 시스템에서 가입자 중심의 동적 위치 영역 할당 기법)

  • Kim, Sang-O;Lee, Jae-Yong;Ryu, Dae-Hui
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.5
    • /
    • pp.1179-1186
    • /
    • 1996
  • A previous location area scheme was proposed for cellular network, in which the size of location area of a user is dynamically determined by is current mobility and call arrival rate as the burden of system reaches the minimum. This scheme, however, doesn't consider other individual's movement pattern respectively because of allocating location area with a system's fixed pattern. When mobile subscribers move fast, this scheme allocates especially so large location area to reduce the number of location registration that it makes much paging cost. In this paper, we suggest new dynamic location area management which allocates location area according to each subscriber's mobility regarding its current location as center point. This new scheme allocates fast subscriber larger location area, which resulted in reducing the number of location registration. And small area paging reduces paging cost.

  • PDF

LLHS: Low Latency Handoff Scheme based on Buffering for Mobile Networks (이동망에서 버퍼링에 기반한 핸드오프 지연감소기법)

  • Rho, Kyung-Taeg;Chung, Dong-Kun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.105-111
    • /
    • 2008
  • Mobility support for mobile networks will be important to minimize the packet overhead, to optimize routing, to reduce handoff latency, and to reduce the volume of handoff signals. Mobile IPv6 (MIPv6) and Hierarchical MIPv6 (HMIPv6) are one of mobility management protocols (MMPs) that provides network layer mobility over all access technologies. However, the communication quality of these candidates is severely degraded during handoffs. As another way to improve the handoff performance of a mobile network by conventional MMPs such as MIPv6 and HMIPv6, we propose a Low Latency Handoff Scheme (LLHS) combining Fast MIPv6 (FMIPv6) with HMIPv6 extension with buffering function, in which Mobility Anchor Points (MAPs) buffer packets destined to the Mobile Routers (MRs) or MNs within a mobile network during handoffs. The simulation results show that the proposed scheme reduces transmission delay and packet loss in UDP communication.

  • PDF

A Study for Improvement Performance on Using Exponentially Weighted Moving Average at IPv6 networks (IPv6 네트웍 환경에서 지수가중적 이동평균 기법을 이용한 성능향상에 관한 연구)

  • Oh, Ji-Hyun;Jeong, Choong-Kyo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.323-326
    • /
    • 2007
  • Mobility Anchor Points are used for the mobility management in HMIPv6 networks. Currently a mobile node selects the MAP farthest away from itself as a new MAP among available candidates when it undertakes a macro handoff. With this technique, however, the traffic tends to be concentrated at a MAP with the largest domain size and the communication cost increases due to the distance between the mobile node and the MAP. In this work, we proposed a cost effective MAP selection scheme. When leaving the current MAP domain. the mobile node calculates the optimum MAP domain size to minimize the local mobility cost at the new MAP domain considering mobile node's velocity and packet transmission rate. The mobile node then selects a MAP domain of size close to the optimum domain size calculated among the candidate MAP domains. In this way, it is possible for the mobile node to select an optimal MAP adaptively taking the network and node states into account, thus reducing the communication cost.

  • PDF

Distributed Mobility Management Scheme in LTE/SAE Networks (LTE/SAE 네트워크에서 분산 이동성 관리 기법)

  • Kim, Yong-Hwan;Han, Youn-Hee;Kim, Min;Park, Seok Yong;Moon, Sang Jun;Lee, Jin Ho;Choi, Dae Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.11
    • /
    • pp.879-894
    • /
    • 2013
  • Recently, due to a explosive growth in the mobile Internet traffic, the problem of excessive data traffic handling on core network and thus scalability problem have been magnified in 3GPP LTE/SAE networks. Current LTE/SAE network based on the central P-GW (PDN Gateway) used as mobility anchor cannot deal with such demand for exponentially increasing mobile Internet traffic. In this paper, we propose a new LTE/SAE network architecture supporting distributed P-GWs and corresponding distributed mobility management to solve these problems. For this, in addition to the deployment of such distributed P-GWs, we propose a dynamic and distributed mobility management by distributing MMEs (Mobility Management Entities) which dynamically manages the location information of a UE's PDN connection, and also propose a handover procedure of such PDN connections by using the proposed distributed P-GWs and MMEs. The performance of the proposed dynamic and distributed LTE/SAE network system is compared with the current LTE/SAE network system in terms of handover latency and network throughput.

Design and Performance Analysis of Cost-Effective and Fast Inter-Domain NEMO Scheme with Multicasting Support (멀티캐스팅 지원의 비용효과적인 도메인간 빠른 NEMO 기법의 설계 및 성능분석)

  • Han, Sunghee;Jeong, Jongpil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.2
    • /
    • pp.87-98
    • /
    • 2012
  • In recent years, there are many data and multimedia services that are supported by WiFi-enabled mobile devices. As a result, the demand for the ability to connect to the Internet anywhere is rapidly increasing and network infrastructure is becoming increasingly important. The design of cost-efficient network mobility (NEMO) protocol is intended to reduce the demand for limited wired/wireless network bandwidth at the signaling of mobility support and packet delivery operations. In this paper, we propose a cost-effective inter-LMA domain mobility management scheme which provides fast handover with multicasting support in NEMO environments. And our Fast PR-NEMO scheme is compared with N-PMIPv6, rNEMO, and PR-NEMO. In conclusion, our proposed scheme shows the best performance in terms of location updating cost, and packet tunneling cost.

Analysis of the Bicycle-Sharing Economy : Strategic Issues for Sustainable Development of Society

  • Kim, Hwajin;Cho, Yooncheong
    • Journal of Distribution Science
    • /
    • v.16 no.7
    • /
    • pp.5-16
    • /
    • 2018
  • Purpose - This study posits that sustainable mobility of the sharing economy plays a key role to consider environment benefits. The purpose of this study is to investigate the bicycle-sharing economy as an emerging and alternative mode of transportation service and provide managerial and policy implications. The bicycle-sharing economy is still at an early stage of introduction as a transportation mode, while the governmental sector is promoting public bicycle-sharing to encourage bicycle as a substitute for private cars. Research design, data, and methodology - This study analyzed the current status of bicycle sharing programs through a survey that was distributed randomly to users and non-users across the country. Using factor analysis, satisfaction and loyalty for the existing users and intention to use and expected satisfaction for the potential users were examined in relation to utility factors. Results - The results show that economic utility affects satisfaction for user, while storage, mobility, and economic utility affects intention to use for potential users. The findings of this study indicate that in order to promote a bicycle-sharing scheme, it would be better to focus on the scheme's economic advantage to be truly effective. Conclusions - The findings of the study could be applicable to future directions of the sharing economy as a means to achieve the sustainable development of society.

A Performance Enhancement Scheme of Hierarchical Mobility Management in IPv6 Networks (IPv6 네트워크에서 계층적 이동성 관리의 성능향상 방안)

  • Seo, Jae-Kwon;Lee, Kyug-Geun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.10
    • /
    • pp.119-126
    • /
    • 2007
  • Recently, the mobility of users and mobile communication technologies have developed rapidly. The users in this state also want to connect their devices and to receive services anywhere, anytime. Hierarchical Mobile IPv6 (HMIPv6) has been proposed by the Internet Engineering Task Force (IETF) to compensate for such problems as handover latency and signaling overhead when employing Mobile IPv6 (MIPv6). HMIPv6 supports micro-mobility within a domain and introduces a new entity, namely Mobility Anchor Point (MAP) as a local home agent. However, HMIPv6 has been found to cause longer handover latency when the inter-domain handover occurs. This is because a Mobile Node (MN) has to generate two addresses and register them to Home Agent (HA) a MAP, respectively. In order to solve such problems, we propose a scheme that an MN generates one address and registers it to HA for supporting fast handover during the inter-domain handover process. In the proposed scheme, the load of MAP and MAP domain is reduced because the number of MNs which are managed by MAP is decreased and the MAP does not perform proxy Neighbor Discovery Protocol (NDP) to intercept packets destined to MNs. We evaluate the performance of proposed scheme in comparison to HMIPv6 through the simulation and numerical analysis.

Secure Key Predistribution Scheme using Authentication in Cluster-based Routing Method (클러스터 기반에서의 인증을 통한 안전한 키 관리 기법)

  • Kim, Jin-Su;Choi, Seong-Yong;Jung, Kyung-Yong;Ryu, Joong-Kyung;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.105-113
    • /
    • 2009
  • The previous key management methods are not appropriate for secure data communication in cluster-based routing scheme. Because cluster heads are elected in every round and communicate with the member nodes for authentication and share-key establishment phase in the cluster. In addition, there are not considered to mobility of nodes in previous key management mechanisms. In this paper, we propose the secure and effective key management mechanisim in the cluster-based routing scheme that if there are no share keys between cluster head and its nodes, we create the cluster key using authentication with base station or trust autentication and exchange the their information for a round.

Mobility Support Scheme Based on Machine Learning in Industrial Wireless Sensor Network (산업용 무선 센서 네트워크에서의 기계학습 기반 이동성 지원 방안)

  • Kim, Sangdae;Kim, Cheonyong;Cho, Hyunchong;Jung, Kwansoo;Oh, Seungmin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.256-264
    • /
    • 2020
  • Industrial Wireless Sensor Networks (IWSNs) is exploited to achieve various objectives such as improving productivity and reducing cost in the diversity of industrial application, and it has requirements such as low-delay and high reliability packet transmission. To accomplish the requirement, the network manager performs graph construction and resource allocation about network topology, and determines the transmission cycle and path of each node in advance. However, this network management scheme cannot treat mobile devices that cause continuous topology changes because graph reconstruction and resource reallocation should be performed as network topology changes. That is, despite the growing need of mobile devices in many industries, existing scheme cannot adequately respond to path failure caused by movement of mobile device and packet loss in the process of path recovery. To solve this problem, a network management scheme is required to prevent packet loss caused by mobile devices. Thus, we analyse the location and movement cycle of mobile devices over time using machine learning for predicting the mobility pattern. In the proposed scheme, the network manager could prevent the problems caused by mobile devices through performing graph construction and resource allocation for the predicted network topology based on the movement pattern. Performance evaluation results show a prediction rate of about 86% compared with actual movement pattern, and a higher packet delivery ratio and a lower resource share compared to existing scheme.