• 제목/요약/키워드: Mobile robotics

검색결과 1,114건 처리시간 0.027초

Planar Region Extraction for Visual Navigation using Stereo Cameras

  • Lee, Se-Na;You, Bum-Jae;Ko, Sung-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.681-686
    • /
    • 2003
  • In this paper, we propose an algorithm to extract valid planar regions from stereo images for visual navigation of mobile robots. The algorithm is based on the difference image between the stereo images obtained by applying Homography matrix between stereo cameras. Illegal planar regions are filtered out by the use of labeling of the difference images and filtering of invalid blobs using the size of each blob. Also, illegal large planar regions such as walls are removed by adopting a weighted low-pass filtering of the difference image using the past difference images. The algorithms are experimented successfully by the use of stereo camera system built in a mobile robot and a PC-based real-time vision system.

  • PDF

iGS와 듀얼 컴퍼스를 이용한 고속 이동로봇의 정밀 위치 인식기법 (A Precise Localization Method for a High Speed Mobile Robot using iGS and Dual Compass)

  • 장원석;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1182-1188
    • /
    • 2010
  • This paper proposes a precise localization algorithm for a quickly moving mobile robot. In order to localize a mobile robot with active beacon sensors, a relatively long time is needed, since the distance to the beacon is measured using the flight time of the ultrasonic signal. The measurement time does not cause a high error rate when the mobile robot moves slowly. However, with an increase of the mobile robot's speed, the localization error becomes too high to use for accurate mobile robot navigation. Therefore, in this research into high speed mobile robot operations, instead of using two active beacons for localization an active beacon and dual compass are utilized to localize the mobile robot. This new approach resolves the high localization error caused by the speed of the mobile robot. The performance of the precise localization algorithm was verified by comparing it to the conventional method through real-world experiments.

기구학적 여유 자유도를 지니는 전방향 모바일 로봇에 관한 연구 (Study of an Omni-directional Mobile Robot with Kinematic Redundancy)

  • 정의정;이병주;김희국
    • 로봇학회논문지
    • /
    • 제3권4호
    • /
    • pp.338-344
    • /
    • 2008
  • Most omni-directional mobile robots have to change their trajectory for avoiding obstacles regardless of the size of the obstacles. However, an omni-directional mobile robot having kinematic redundancy can maintain the trajectory while the robot avoids small obstacles. This works deals with the kinematic modeling and motion planning of an omni-directional mobile robot with kinematic redundancy. This robot consists of three wheel mechanisms. Each wheel mechanism is modeled as having four joints, while only three joints are necessary for creating the omni-directional motion. Thus, each chain has one kinematic redundancy. Two types of wheel mechanisms are compared and its kinematic modeling is introduced. Finally, several motion planning algorithms using the kinematic redundancy are investigated. The usefulness of this robot is shown through experiment.

  • PDF

레이저 레인지 파인더와 2½D 지도 기반의 선분/호 개체를 이용한 이동 로봇의 실외 위치 추정 알고리즘 (Outdoor Mobile Robot Localization Algorithm using Line/Arc Features based on Laser Range Finders and 2½D Map)

  • 윤건우;김진백;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제18권7호
    • /
    • pp.658-663
    • /
    • 2012
  • An accurate outdoor localization method using line/arc features is suggested for mobile robots with LRFs (Laser Range Finders) and odometry. Localization is a key process for outdoor mobile robots which are used for autonomous navigation, exploration and so on. In this paper, an accurate pose correction algorithm is proposed for mobile robots using LRFs, which use three feature types: line, circle, and arc. Using this method we can reduce the number of singular cases that robots couldn't find their pose. Finally we have got simulation results to validate the proposed algorithm.

선형 작업 영역 확장 구조를 가진 두 바퀴 구동 모바일 로봇에 대한 연구 (Study of a Two-wheel Mobile Robot with Linear Workspace Extension Structures)

  • 배영걸;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제21권4호
    • /
    • pp.342-348
    • /
    • 2015
  • This paper presents a two-wheel balancing mobile robot with linear workspace extension structures. The two-wheel mobile robot has two linear motions at the waist and shoulder to have extended workspace. The linear motion of the waist and shoulder provides some structural advantages. A dynamic equation of the simplified robot system is derived. Simulation studies of the position control of the robot system are performed based on the dynamic equations. The dynamic relationship between a two-wheel mobile system and linear extension mechanism is observed by simulation studies.

운동물체의 정보를 이용한 이동로봇의 자기 위치 추정 (Localization of a Mobile Robot Using the Information of a Moving Object)

  • 노동규;김일명;김병화;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제7권11호
    • /
    • pp.933-938
    • /
    • 2001
  • In this paper, we describe a method for the mobile robot using images of a moving object. This method combines the observed position from dead-reckoning sensors and the estimated position from the images captured by a fixed camera to localize a mobile robot. Using the a priori known path of a moving object in the world coordinates and a perspective camera model, we derive the geometric constraint equations which represent the relation between image frame coordinates for a moving object and the estimated robot`s position. Since the equations are based on the estimated position, the measurement error may exist all the time. The proposed method utilizes the error between the observed and estimated image coordinates to localize the mobile robot. The Kalman filter scheme is applied to this method. Effectiveness of the proposed method is demonstrated by the simulation.

  • PDF

분산형 센서로 구현된 지능화 공간을 위한 계층적 행위기반의 이동에이젼트 제어 (Human Hierarchical Behavior Based Mobile Agent Control in Intelligent Space with Distributed Sensors)

  • 진태석;히데키 하시모토
    • 제어로봇시스템학회논문지
    • /
    • 제11권12호
    • /
    • pp.984-990
    • /
    • 2005
  • The aim of this paper is to investigate a control framework for mobile robots, operating in shared environment with humans. The Intelligent Space (iSpace) can sense the whole space and evaluate the situations in the space by distributing sensors. The mobile agents serve the inhabitants in the space utilizes the evaluated information by iSpace. The iSpace evaluates the situations in the space and learns the walking behavior of the inhabitants. The human intelligence manifests in the space as a behavior, as a response to the situation in the space. The iSpace learns the behavior and applies to mobile agent motion planning and control. This paper introduces the application of fuzzy-neural network to describe the obstacle avoidance behavior teamed from humans. Simulation results are introduced to demonstrate the efficiency of this method.

퍼지신경회로망을 이용한 장애물 회피에 관한 연구 (A Study on the Obstacle Avoidance using Fuzzy-Neural Networks)

  • 노영식;권석근
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.338-343
    • /
    • 1999
  • In this paper, the fuzzy neural network for the obstacle avoidance, which consists of the straight-line navigation and the barrier elusion navigation, is proposed and examined. For the straight-line navigation, the fuzzy neural network gets two inputs, angle and distance between the line and the mobile robot, and produces one output, steering velocity of the mobile robot. For the barrier elusion navigation, four ultrasonic sensors measure the distance between the barrier and the mobile robot and provide the distance information to the network. Then the network outputs the steering velocity to navigate along the obstacle boundary. Training of the proposed fuzzy neural network is executed in a given environment in real-time. The weights adjusting uses the back-propagation of the gradient of error to be minimized. Computer simulations are carried out to examine the efficiency of the real time learning and the guiding ability of the proposed fuzzy neural network. It has been shown that the mobile robot that employs the proposed fuzzy neural network navigates more safely with and less trembling locus compared with the previous reported efforts.

  • PDF

GPU 기반 SIFT 방법과 가상의 힘을 이용한 이동 로봇의 위치 인식 및 자율 주행 제어 (Localization and Autonomous Navigation Using GPU-based SIFT and Virtual Force for Mobile Robots)

  • 탁명환;주영훈
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1738-1745
    • /
    • 2016
  • In this paper, we present localization and autonomous navigation method using GPU(Graphics Processing Unit)-based SIFT(Scale-Invariant Feature Transform) algorithm and virtual force method for mobile robots. To do this, at first, we propose the localization method to recognize the landmark using the GPU-based SIFT algorithm and to update the position using extended Kalman filter. And then, we propose the A-star algorithm for path planning and the virtual force method for autonomous navigation of the mobile robot. Finally, we demonstrate the effectiveness and applicability of the proposed method through some experiments using the mobile robot with OPRoS(Open Platform for Robotic Services).

센서융합을 이용한 모바일로봇 실내 위치인식 기법 (An Indoor Localization of Mobile Robot through Sensor Data Fusion)

  • 김윤구;이기동
    • 로봇학회논문지
    • /
    • 제4권4호
    • /
    • pp.312-319
    • /
    • 2009
  • This paper proposes a low-complexity indoor localization method of mobile robot under the dynamic environment by fusing the landmark image information from an ordinary camera and the distance information from sensor nodes in an indoor environment, which is based on sensor network. Basically, the sensor network provides an effective method for the mobile robot to adapt to environmental changes and guides it across a geographical network area. To enhance the performance of localization, we used an ordinary CCD camera and the artificial landmarks, which are devised for self-localization. Experimental results show that the real-time localization of mobile robot can be achieved with robustness and accurateness using the proposed localization method.

  • PDF