• Title/Summary/Keyword: Mobile robot localization

Search Result 397, Processing Time 0.027 seconds

EKF based Mobile Robot Indoor Localization using Pattern Matching (패턴 매칭을 이용한 EKF 기반 이동 로봇 실내 위치 추정)

  • Kim, Seok-Young;Lee, Ji-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.45-56
    • /
    • 2012
  • This paper proposes how to improve the performance of CSS-based indoor localization system. CSS based localization utilizes signal flight time between anchors and tag to estimate distance. From the distances, the 3-dimensional position is calculated through trilateration. However the error in distance caused from multi-path effect transfers to the position error especially in indoor environment. This paper handles a problem of reducing error in raw distance information. And, we propose the new localization method by pattern matching instead of the conventional localization method based on trilateration that is affected heavily on multi-path error. The pattern matching method estimates the position by using the fact that the measured data of near positions possesses a high similarity. In order to gain better performance of localization, we use EKF(Extended Kalman Filter) to fuse the result of CSS based localization and robot model.

Simultaneous Localization & Map-building of Mobile Robot in the Outdoor Environments by Vision-based Compressed Extended Kalman Filter (Compressed Extended Kalman 필터를 이용한 야외 환경에서 주행 로봇의 위치 추정 및 지도 작성)

  • Yoon Suk-June;Choi Hyun-Do;Park Sung-Kee;Kim Soo-Hyun;Kwak Yoon-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.585-593
    • /
    • 2006
  • In this paper, we propose a vision-based simultaneous localization and map-building (SLAM) algorithm. SLAM problem asks the location of mobile robot in the unknown environments. Therefore, this problem is one of the most important processes of mobile robots in the outdoor operation. To solve this problem, Extended Kalman filter (EKF) is widely used. However, this filter requires computational power (${\sim}O(N)$, N is the dimension of state vector). To reduce the computational complexity, we applied compressed extended Kalman filter (CEKF) to stereo image sequence. Moreover, because the mobile robots operate in the outdoor environments, we should estimate full d.o.f.s of mobile robot. To evaluate proposed SLAM algorithm, we performed the outdoor experiments. The experiment was performed by using new wheeled type mobile robot, Robhaz-6W. The performance results of CEKF SLAM are presented.

Self-localization of a Mobile Robot Using Global Ultrasonic Sensor System (전역 초음파 센서 시스템을 이용한 이동 로봇의 자기 위치 추정)

  • 이수영;진재호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.145-151
    • /
    • 2003
  • A global ultrasonic sensor system for self-localization of a mobile robot is proposed in this paper. The global ultrasonic sensor system consists of three or more ultrasonic transmitters fixed at some positions in the world coordinate and receivers in the moving coordinate of a mobile robot. In this global sensor system it is easy to get state vector of the mobile robot in the world coordinate from the distance information between each ultrasonic transmitter and receiver. An extended kalman filter algorithm is used to process the noisy ultrasonic signal and to estimate the state vector. In case of using several independent ultrasonic transmitters, it is necessary to avoid the cross talk among the ultrasonic waves and to synchronize between each ultrasonic transmitter and receiver. The small sized radio frequency modules are adopted to solve the cross talk and the synchronization problem Computer simulation and experiments are carried out to verify the effectiveness of the proposed ultrasonic sensor system.

Localization for Mobile Robot Based on Chirp Spread Spectrum Ranging (Chirp Spread Spectrum거리 측정을 이용한 이동 로봇의 위치 추정)

  • Cho, Hyeon-Woo;Lee, Young-Hun;Kim, Sang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.994-1001
    • /
    • 2009
  • CSS (Chirp Spread Spectrum) specified in IEEE 802.15.4a can be used for ranging applications. In this paper, we apply the CSS to estimate the coordinates of a mobile robot. Four anchor nodes are installed at known positions and a tag node is attached to the target mobile robot. By CSS ranging, we measure the distances between each anchor and the tag node. Based on the measured distances, the coordinates of the mobile robot can be calculated by the method of trilateration. However the calculated coordinates are not accurate because of the errors of the measured distances. Therefore we propose an algorithm for reducing the effect of the errors. The proposed algorithm is executed with the extended Kalman filter. Through localization experiments, we show the performance of the proposed algorithm and the accuracy of the estimated position.

Indoor Positioning System Based on Camera Sensor Network for Mobile Robot Localization in Indoor Environments (실내 환경에서의 이동로봇의 위치추정을 위한 카메라 센서 네트워크 기반의 실내 위치 확인 시스템)

  • Ji, Yonghoon;Yamashita, Atsushi;Asama, Hajime
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.952-959
    • /
    • 2016
  • This paper proposes a novel indoor positioning system (IPS) that uses a calibrated camera sensor network and dense 3D map information. The proposed IPS information is obtained by generating a bird's-eye image from multiple camera images; thus, our proposed IPS can provide accurate position information when objects (e.g., the mobile robot or pedestrians) are detected from multiple camera views. We evaluate the proposed IPS in a real environment with moving objects in a wireless camera sensor network. The results demonstrate that the proposed IPS can provide accurate position information for moving objects. This can improve the localization performance for mobile robot operation.

Robust Mobile-Robot Localization for Indoor SLAM (이동 로봇의 강인한 위치 추정을 통한 실내 SLAM)

  • Mo, Se-Hyun;Yu, Dong-Hyun;Park, Jong-Ho;Chong, Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.4
    • /
    • pp.301-306
    • /
    • 2016
  • This paper presents the results of a study for robust self-localization and indoor slam using external cameras (such as a CCTV) and odometry of mobile robot. First, a position of mobile robot was estimated by using maker and odometry. This data was then fused with camera data and odometry data using an extended kalman filter. Finally, indoor slam was realized by applying the proposed method. This was demonstrated in the actual experiment.

Positioning Accuracy on Robot Self-localization by Real-time Indoor Positioning System with SS Ultrasonic Waves

  • Suzuki, Akimasa;Kumakura, Ken;Tomizuka, Daisuke;Hagiwara, Yoshinobu;Kim, Youngbok;Choi, Yongwoon
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.100-111
    • /
    • 2013
  • Indoor real-time positioning for multiple targets is required to realize human-robot symbiosis. This study firstly presents positioning accuracy on an autonomous mobile robot controlled by 3-D coordinates that is obtained by a real-time indoor positioning system with spread spectrum (SS) ultrasonic signals communicated by code-division multiple access. Although many positioning systems have been investigated, the positioning system with the SS ultrasonic signals can measure identified multiple 3-D positions in every 70 ms with noise tolerance and error within 100 mm. This system is also robust to occlusion and environmental changes. However, thus far, the positioning errors in an autonomous mobile robot, controlled by these systems using the SS ultrasonic signals, have not been evaluated as an experimental study. Therefore, a positioning experiment for trajectory control is conducted using an autonomous mobile robot and our positioning system. The effectiveness of this positioning method for robot self-localization is shown, from this experiment, because the average control error between the target position and the robot's position at 29 mm is obtained.

Mobile robot localization using an active omni-directional range sensor (전방향 능동거리 센서를 이용한 이동로봇의 자기위치 추정)

  • 정인수;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1597-1600
    • /
    • 1997
  • Most autonomous mobile robots view things only in front of them. As a result they may collide against objects moving from the side or behind. To overcome the problem we have built an Active Omni-directional Range Sensor that can obtain omni-directional depth data by a laser conic plane and a conic mirror. Also we proposed a self-localization algorithm of mobile robot in unknown environment by fusion of Odometer and Active Omn-directional Range Sensor.

  • PDF

A Study on Real-Time Localization and Map Building of Mobile Robot using Monocular Camera (단일 카메라를 이용한 이동 로봇의 실시간 위치 추정 및 지도 작성에 관한 연구)

  • Jung, Dae-Seop;Choi, Jong-Hoon;Jang, Chul-Woong;Jang, Mun-Suk;Kong, Jung-Shik;Lee, Eung-Hyuk;Shim, Jae-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.536-538
    • /
    • 2006
  • The most important factor of mobile robot is to build a map for surrounding environment and estimate its localization. This paper proposes a real-time localization and map building method through 3-D reconstruction using scale invariant feature from monocular camera. Mobile robot attached monocular camera looking wall extracts scale invariant features in each image using SIFT(Scale Invariant Feature Transform) as it follows wall. Matching is carried out by the extracted features and matching feature map that is transformed into absolute coordinates using 3-D reconstruction of point and geometrical analysis of surrounding environment build, and store it map database. After finished feature map building, the robot finds some points matched with previous feature map and find its pose by affine parameter in real time. Position error of the proposed method was maximum. 8cm and angle error was within $10^{\circ}$.

  • PDF

Global Localization of Mobile Robots Using Omni-directional Images (전방위 영상을 이용한 이동 로봇의 전역 위치 인식)

  • Han, Woo-Sup;Min, Seung-Ki;Roh, Kyung-Shik;Yoon, Suk-June
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.517-524
    • /
    • 2007
  • This paper presents a global localization method using circular correlation of an omni-directional image. The localization of a mobile robot, especially in indoor conditions, is a key component in the development of useful service robots. Though stereo vision is widely used for localization, its performance is limited due to computational complexity and its narrow view angle. To compensate for these shortcomings, we utilize a single omni-directional camera which can capture instantaneous $360^{\circ}$ panoramic images around a robot. Nodes around a robot are extracted by the correlation coefficients of CHL (Circular Horizontal Line) between the landmark and the current captured image. After finding possible near nodes, the robot moves to the nearest node based on the correlation values and the positions of these nodes. To accelerate computation, correlation values are calculated based on Fast Fourier Transforms. Experimental results and performance in a real home environment have shown the feasibility of the method.