• 제목/요약/키워드: Mobile robot control

Search Result 1,466, Processing Time 0.043 seconds

Extraction of Different Types of Geometrical Features from Raw Sensor Data of Two-dimensional LRF (2차원 LRF의 Raw Sensor Data로부터 추출된 다른 타입의 기하학적 특징)

  • Yan, Rui-Jun;Wu, Jing;Yuan, Chao;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.265-275
    • /
    • 2015
  • This paper describes extraction methods of five different types of geometrical features (line, arc, corner, polynomial curve, NURBS curve) from the obtained raw data by using a two-dimensional laser range finder (LRF). Natural features with their covariance matrices play a key role in the realization of feature-based simultaneous localization and mapping (SLAM), which can be used to represent the environment and correct the pose of mobile robot. The covariance matrices of these geometrical features are derived in detail based on the raw sensor data and the uncertainty of LRF. Several comparison are made and discussed to highlight the advantages and drawbacks of each type of geometrical feature. Finally, the extracted features from raw sensor data obtained by using a LRF in an indoor environment are used to validate the proposed extraction methods.

Arc/Line Segments-based SLAM by Updating Accumulated Sensor Data (누적 센서 데이터 갱신을 이용한 아크/라인 세그먼트 기반 SLAM)

  • Yan, Rui-Jun;Choi, Youn-sung;Wu, Jing;Han, Chang-soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.936-943
    • /
    • 2015
  • This paper presents arc/line segments-based Simultaneous Localization and Mapping (SLAM) by updating accumulated laser sensor data with a mobile robot moving in an unknown environment. For each scan, the sensor data in the set are stored by a small constant number of parameters that can recover the necessary information contained in the raw data of the group. The arc and line segments are then extracted according to different limit values, but based on the same parameters. If two segments, whether they are homogenous features or not, from two scans are matched successfully, the new segment is extracted from the union set with combined data information obtained by means of summing the equivalent parameters of these two sets, not combining the features directly. The covariance matrixes of the segments are also updated and calculated synchronously employing the same parameters. The experiment results obtained in an irregular indoor environment show the good performance of the proposed method.

Moving Object Detection Using SURF and Label Cluster Update in Active Camera (SURF와 Label Cluster를 이용한 이동형 카메라에서 동적물체 추출)

  • Jung, Yong-Han;Park, Eun-Soo;Lee, Hyung-Ho;Wang, De-Chang;Huh, Uk-Youl;Kim, Hak-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.35-41
    • /
    • 2012
  • This paper proposes a moving object detection algorithm for active camera system that can be applied to mobile robot and intelligent surveillance system. Most of moving object detection algorithms based on a stationary camera system. These algorithms used fixed surveillance system that does not consider the motion of the background or robot tracking system that track pre-learned object. Unlike the stationary camera system, the active camera system has a problem that is difficult to extract the moving object due to the error occurred by the movement of camera. In order to overcome this problem, the motion of the camera was compensated by using SURF and Pseudo Perspective model, and then the moving object is extracted efficiently using stochastic Label Cluster transport model. This method is possible to detect moving object because that minimizes effect of the background movement. Our approach proves robust and effective in terms of moving object detection in active camera system.

A Stereo Camera Based Method of Plane Detection for Path Finding of Walking Robot (보행로봇의 이동경로 인식을 위한 스테레오카메라 기반의 평면영역 추출방법)

  • Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.236-241
    • /
    • 2008
  • This paper presents a method to recognize the plane regions for movement of walking robots. When the autonomous agencies using stereo camera or laser scanning sensor is under unknown 3D environment, the mobile agency has to detect the plane regions to decide the moving direction and perform the given tasks. In this paper, we propose a very fast method for plane detection using normal vector of a triangle by 3 vertices defined on a small circular region. To reduce the effect of noises and outliers, the triangle rotates with respect to the center position of the circular region and generates a series of triangles with different normal vectors based on different three points on the boundary of the circular region. The vectors for several triangles are normalized and then median direction of the normal vectors is used to test the planarity of the circular region. The method is very fast and we prove the performance of algorithm for real range data obtained from a stereo camera system.

Disturbance Rejection and Attitude Control of the Unmanned Firing System of the Mobile Vehicle (이동형 차량용 무인사격시스템의 외란 제거 및 자세 제어)

  • Chang, Yu-Shin;Keh, Joong-Eup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.64-69
    • /
    • 2007
  • Motion control of the system is a position control of motor. Motion control of an uncertain robot system is considered as one of the most important and fundamental research directions in the robotics. Some distinguished works using linear control, adaptive control, robust control strategies based on computed torque methodology have been reported. However, it is generally recognized within the control community that these strategies suffer from the following problems : the exact robot dynamics are needed and hard to implement, the adaptive control cannot guarantee the performance during the transient period for adaptation under the variation, the robust control algorithms such as the sliding mode control need information on the bounds of the possible uncertainty and disturbance. And it produces a large control input as well. In this dissertation, a motion control for the unmanned intelligent robot system using disturbance observer is studied. This system is affected with an impact vibration disturbance. This paper describes a stable motion control of the system with the consideration of external disturbance. To obtain the stable motion independently against the external disturbance, the disturbance rejection is strongly required. To address the above issue, this paper presents a Disturbance OBserver(DOB) control algorithm. The validity of the suggested DOB robust control scheme is confirmed by several computer simulation results. And the experiments with a motor system is performed to give the validity of applicability in the industrial field. This results make the easier implementation of the controller possible in the field.

An Improved Domain-Knowledge-based Reinforcement Learning Algorithm

  • Jang, Si-Young;Suh, Il-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1309-1314
    • /
    • 2003
  • If an agent has a learning ability using previous knowledge, then it is expected that the agent can speed up learning by interacting with environment. In this paper, we present an improved reinforcement learning algorithm using domain knowledge which can be represented by problem-independent features and their classifiers. Here, neural networks are employed as knowledge classifiers. To show the validity of our proposed algorithm, computer simulations are illustrated, where navigation problem of a mobile robot and a micro aerial vehicle(MAV) are considered.

  • PDF

A Method for Local Collision-free Motion Coordination of Multiple Mobile Robots

  • Ko, Nak-Yong;Seo, Dong-Jin;Kim, Koung-Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1609-1614
    • /
    • 2003
  • This paper presents a new method driving multiple robots to their goal position without collision. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. To implement the concept in collision avoidance of multiple robots, relative distance between the robots is proposed. The relative distance is a virtual distance between robots indicating the threat of collision between the robots. Based on the relative distance, the method calculates repulsive force against a robot from the other robots. Also, attractive force toward the goal position is calculated in terms of the relative distance. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. The proposed method works as a local collision-free motion coordination method in conjunction with higher level of task planning and path planning method for multiple robots to do a collaborative job.

  • PDF

Development of a Joint Torque Sensor Fully Integrated with an Actuator

  • Kim, Bong-Seok;Yun, Seung-Kook;Kang, Sung-Chul;Hwang, Chang-Soon;Kim, Mun-Sang;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1679-1683
    • /
    • 2005
  • This paper suggests the new type of a joint torque sensor which is attached at each joint of a manipulator for making compliance. Previous six axis force/torque sensors are high cost and installed end-effector of the manipulator. However, torque on links of previous an end-effector cannot be measured. We design a joint torque sensor that can be fully integrated with an actuator in order to measure applying torque of the manipulator. The sensor system is designed through the structural analysis. The proposed joint torque sensors are installed to the 6 DOF manipulator of a mobile robot for hazardous works and we implemented experiments of measuring applied torque to the manipulator. By the experiment, we proved that the proposed low-cost joint torque sensor gives acceptable performance when we control a manipulator.

  • PDF

A Navigation System for Mobile Robot

  • Zhang, Yuanliang;Chong, Kil-To
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.118-120
    • /
    • 2009
  • In this paper, we present the Q-learning method for adaptive traffic signal control on the basis of multi-agent technology. The structure is composed of sixphase agents and one intersection agent. Wireless communication network provides the possibility of the cooperation of agents. As one kind of reinforcement learning, Q-learning is adopted as the algorithm of the control mechanism, which can acquire optical control strategies from delayed reward; furthermore, we adopt dynamic learning method instead of static method, which is more practical. Simulation result indicates that it is more effective than traditional signal system.

  • PDF

Development of PSD Sensor Based Distance Measuring System for Intelligent Mobile Robot (지능형 이동로봇을 위한 PSD센서기반 거리계측 시스템의 개발)

  • Kim Yu-Chan;Ryoo Young-Jae;Chang Young-Hak;Song Jeong-Gon;Lee Ju-Sang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.225-228
    • /
    • 2005
  • 본 논문에서는 이동로봇의 저가형 위치인식센서로 적합한 PSD(Position Sensitive Detector)센서를 이용하여 거리계측시스템을 개발하였다. PSD 센서는 거리-전압 출력이 비선형적인 단점을 가지고 있어 센서의 특성실험을 통해 선형화가 가능한 변환함수를 제안하였다. 제안한 방법을 검증하기 위하여 거리계측시스템의 하드웨어 및 소프트웨어를 구성하였다. 또 피측정체의 색상 및 재질에 따른 출력특성을 실험하고 거리-전압 데이터를 측정하였다. 실측한 데이터를 바탕으로 제안한 선형화함수의 계수를 추출하였다. 마지막으로 제안한 함수에 의한 거리와 실제거리를 비교하여 시스템의 성능 및 정확성을 검증하였다.

  • PDF