• Title/Summary/Keyword: Mobile proton model

Search Result 6, Processing Time 0.023 seconds

Collisionally-Activated Dissociation of Peptides with a Disulfide Bond: Confirmation of the Mobile-Proton Model Based Explanation

  • Lee, Youn-Jin;Oh, Han-Bin
    • Mass Spectrometry Letters
    • /
    • v.1 no.1
    • /
    • pp.5-8
    • /
    • 2010
  • In the present study, collisionally-activated dissociation (CAD) experiments were performed under low energy collision conditions in six peptides containing a disulfide bond. Fragments produced as a result of the cleavage of a disulfide bond were obtained after CAD in four peptides (bactenecin, TGF-$\alpha$, cortistantin, and linearly linked peptide, Scheme 1) with basic amino acid residues. In contrast, the CAD analysis of two peptides with no basic residue (oxytocin and tocinoic acid) rarely produced fragments indicative of cleavage of a disulfide bond. These results are consistent with the mobile proton model suggested by the McLuckey and O'air groups (ref. 22 and 23); nonmobile protons sequestered at basic amino acid residues appear to promote the cleavage of disulfide bonds.

Charge-Directed Peptide Backbone Dissociations of o-TEMPO-Bz-C(O)-Peptides

  • Jeon, Aeran;Lee, Ji Hye;Kwon, Hyuk Su;Park, Hyung Soon;Moon, Bong Jin;Oh, Han Bin
    • Mass Spectrometry Letters
    • /
    • v.4 no.4
    • /
    • pp.71-74
    • /
    • 2013
  • In the present study, we report that the charge-directed (assisted) peptide dissociation products, such as b- and y-type peptide backbone fragments, were the major products in MS/MS and $MS^3$ applications of some o-TEMPO-Bz-C(O)-peptide ions, while radical-driven dissociation products, such as a/x and c/z-type fragments, were previously shown to be the major products in the free radical initiated peptide sequencing mass spectrometry (FRIPS MS). Those o-TEMPO-Bz-C(O)-peptides share a common feature in their sequences, that is, the peptides do not include an arginine residue that has the highest proton affinity among free amino acids. The appearance of b- and y-type fragments as major products in FRIPS MS can be understood in terms of the so-called "mobile-proton model". When the proton is highly mobilized by the absence of arginine, the chare-directed peptide dissociation pathways appear to be more competitive than the radical-driven dissociation pathways, in our FRIPS experiments.

Integrated Thermochemical Approach to Collision-Induced Dissociation Process of Peptides

  • Shin, Seung Koo;Yoon, Hye-Joo
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.131-136
    • /
    • 2021
  • Collision-induced dissociation of peptides involves a series of proton-transfer reactions in the activated peptide. To describe the kinetics of energy-variable dissociation, we considered the heat capacity of the peptide and the Marcus-theory-type proton-transfer rate. The peptide ion was activated to the high internal energy states by collision with a target gas in the collision cell. The mobile proton in the activated peptide then migrated from the most stable site to the amide oxygen and subsequently to the amide nitrogen (N-protonated) of the peptide bond to be broken. The N-protonated intermediate proceeded to the product-like complex that dissociated to products. Previous studies have suggested that the proton-transfer equilibria in the activated peptide affect the dissociation kinetics. To take the extent of collisional activation into account, we assumed a soft-sphere collision model, where the relative collision energy was fully available to the internal excitation of a collision complex. In addition, we employed a Marcus-theory-type rate equation to account for the proton-transfer equilibria. Herein, we present results from the integrated thermochemical approach using a tryptic peptide of ubiquitin.

The Performance Analysis of Polymer Electrolyte Membrane Fuel Cells for Mobile Devices using CFD (CFD를 이용한 모바일기기용 고분자전해질 연료전지 성능해석)

  • Kim B.H.;Choi J.P.;Kang D.C.;Jeon B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.553-554
    • /
    • 2006
  • This paper presents the effects of different operating parameters on the performance of a proton exchange membrane (PEM) fuel cell by a three-dimensional computational fluid dynamics (CFD) model. The effects of different operating parameters on the performance of PEM fuel cell studied using pure hydrogen on the anode side and air on the cathode side. The various parameters are temperatures, pressures, humidification of the gas steams and various combinations of these parameters. In addition, geometrical and material parameters such as the gas diffusion layer (GDL) thickness and porosity as well as the ratio between the channel width and the land area were investigated.

  • PDF

A Study on the Performance Analysis of Mobile Fuel Cell (모바일용 연료전지의 성능해석에 관한 연구)

  • Kim, Kwang-Soo;Choi, Jong-Pil;Jeong, Chang-Ryeol;Jang, Jae-Hyeok;Jeon, Byeong-Hee;Kim, Byeong-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.115-121
    • /
    • 2008
  • In this paper, a three-dimensional computational fluid dynamic model of a proton exchange membrane fuel cell(PEMFC) with serpentine flow channel is presented. A steady state, single phase and isothermal numerical model has been established to investigate the influence of the GDL (Gas Diffusion Layer) parameters. The GDL is made of a porous material such as carbon cloth, carbon paper or metal wire mesh. For the simplicity, the GDL is modeled as a block of material having numerous pathways through which gaseous reactants and liquid water can pass. The porosity, permeability and thickness of the GDL, which are employed in the model parameters significantly affect the PEMFC performance at the high current region.

Physical Modeling of Chemical Exchange Saturation Transfer Imaging

  • Jahng, Geon-Ho;Oh, Jang-Hoon
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.135-143
    • /
    • 2017
  • Chemical Exchange Saturation Transfer (CEST) imaging is a method to detect solutes based on the chemical exchange of mobile protons with water. The solute protons exchange with three different patterns, which are fast, slow, and intermediate rates. The CEST contrast can be obtained from the exchangeable protons, which are hydroxyl protons, amine protons, and amide protons. The CEST MR imaging is useful to evaluate tumors, strokes, and other diseases. The purpose of this study is to review the mathematical model for CEST imaging and for measurement of the chemical exchange rate, and to measure the chemical exchange rate using a 3T MRI system on several amino acids. We reviewed the mathematical models for the proton exchange. Several physical models are proposed to demonstrate a two-pool, three-pool, and four-pool models. The CEST signals are also evaluated by taking account of the exchange rate, pH and the saturation efficiency. Although researchers have used most commonly in the calculation of CEST asymmetry, a quantitative analysis is also developed by using Lorentzian fitting. The chemical exchange rate was measured in the phantoms made of asparagine (Asn), glutamate (Glu), ${\gamma}-aminobutyric$ acid (GABA), glycine (Gly), and myoinositol (MI). The experiment was performed at a 3T human MRI system with three different acidity conditions (pH 5.6, 6.2, and 7.4) at a concentration of 50 mM. To identify the chemical exchange rate, the "lsqcurvefit" built-in function in MATLAB was used to fit the pseudo-first exchange rate model. The pseudo-first exchange rate of Asn and Gly was increased with decreasing acidity. In the case of GABA, the largest result was observed at pH 6.2. For Glu, the results at pH 5.6 and 6.2 did not show a significant difference, and the results at pH 7.4 were almost zero. For MI, there was no significant difference at pH 5.6 or 7.4, however, the results at pH 6.2 were smaller than at the other pH values. For the experiment at 3T, we were only able to apply 1 s as the maximum saturation duration due to the limitations of the MRI system. The measurement of the chemical exchange rate was limited in a clinical 3T MRI system because of a hardware limitation.