• Title/Summary/Keyword: Mobile phone camera

Search Result 223, Processing Time 0.026 seconds

Improvement of Assembly Characteristics of a Lens Module in a Mobile Phone Camera using Finite Element Analysis (유한요소해석을 사용한 휴대폰 카메라용 렌즈모듈의 결합특성 개선)

  • Moon, Yang-Ho;Moon, Jae-Ho;Lyu, Min-Young;Park, Keun
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.366-372
    • /
    • 2009
  • The present study covers the optimal design for a lens module in a mobile phone camera by using the design of experiments (DOE) and finite element (FE) analysis. FE analyses are performed to investigate the effect of design parameters on the amount of torque required to assemble a barrel and a housing part. The DOE approach is then performed to optimize the design parameters in order to maintain an appropriate torque with less variations.

Implementation of JPEG and Relay Server Using The Robot Control UI Program (JPEG 방식과 Relay Server를 이용한 로봇제어 UI Program 개발에 관한 연구)

  • Park, Hyun-Kyung;Park, Seok-Il;Kil, Se-Kee;Hong, Seong-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1101-1104
    • /
    • 2005
  • As intelligence of robot is developed, consumer of robot changes by ordinary people. Intelligent service robot is produced to a target of ordinary people. It is risen that need the most service robot business. Among the control mobile robot because using network by real time. Do to appear on mobile phone LCD screen being transmitted image from device that acquire transmit of mobile phone user interface development and real time mobile robot in this study. Use the BREW that is Qualcomm's Mobile platform for mobile phone user interface development. Mobile phone JPEG compression function chooses excellent camera phone and display transmit image which send connection setting screen and mobile robot on LCD screen by real time. At the same time, materialize to make screen that can process button input that can control transfer of robot. Also, Relay Server used to help processing of protocol to control direction of mobile robot.

  • PDF

Analysis of 3D Accuracy According to Determination of Calibration Initial Value in Close-Range Digital Photogrammetry Using VLBI Antenna and Mobile Phone Camera (VLBI 안테나와 모바일폰 카메라를 활용한 근접수치사진측량의 캘리브레이션 초기값 결정에 따른 3차원 정확도 분석)

  • Kim, Hyuk Gi;Yun, Hong Sik;Cho, Jae Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.31-43
    • /
    • 2015
  • This study had been aimed to conduct the camera calibration on VLBI antenna in the Space Geodetic Observation Center of Sejong City with a low-cost digital camera, which embedded in a mobile phone to determine the three-dimension position coordinates of the VLBI antenna, based on stereo images. The initial values for the camera calibration have been obtained by utilizing the Direct Linear Transformation algorithm and the commercial digital photogrammetry system, PhotoModeler $Scanner^{(R)}$ ver. 6.0, respectively. The accuracy of camera calibration results was compared with that the camera calibration results, acquired by a bundle adjustment with nonlinear collinearity condition equation. Although two methods showed significant differences in the initial value, the final calibration demonstrated the consistent results whichever methods had been performed for obtaining the initial value. Furthermore, those three-dimensional coordinates of feature points of the VLBI antenna were respectively calculated using the camera calibration by the two methods to be compared with the reference coordinates obtained from a total station. In fact, both methods have resulted out a same standard deviation of $X=0.004{\pm}0.010m$, $Y=0.001{\pm}0.015m$, $Z=0.009{\pm}0.017m$, that of showing a high degree of accuracy in centimeters. From the result, we can conclude that a mobile phone camera opens up the way for a variety of image processing studies, such as 3D reconstruction from images captured.

Auto detect inspection system for single lens product of mobile phone camera (휴대폰 카메라용 렌즈단품 이물 자동검사장비)

  • Song C.H.;Jung Y.W.;Bae S.S.;Song J.Y.;Kim Y.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.432-435
    • /
    • 2005
  • The Mega-pixel camera phones become main trends in mobile phone market. The lens modules used in mesa-pixel camera phones need high resolution. One of the main factors of resolution drop is the defects of bare lens. Though there are many advantages in auto-inspection of defects of bare lens, high technical problems take the defect inspections to be done with manual process. In this paper, the type and the source of defects were described and bare lens defect auto-inspection system design was explained. The designed auto-inspection system is composed of illumination optics part, focusing optics part and auto-moving system. With the proposed auto-inspection system, fast and uniform inspection of bare lens can be achieved.

  • PDF

Implementation of G-Robot Framework using Fusion Technology (융복합기술을 활용한 G-Robot 프레임워크 구현)

  • Park, Young-Sik;Kim, Do-Hyun;Kwon, Sung-Gab;Yang, Yeong-Yil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.332-337
    • /
    • 2010
  • In this paper, we propose G-Robot framework implemented with the fusion technology called RITS(Robot Technology & Information Technology System) for robot control and remote monitoring using the mobile phone. In our implemented system, the mobile phone mounted on the robot controls the robot and sends the images to the mobile phone of the user. We can monitor surrounding area of the robot with mobile phone and control the movement of the robot by sending the data between mobile-phones. Also, if the predefined situation occurs to the robot, the mobile phone on the robot sends the data to the mobile-phone of the user. From the experimental result, we can conclude that it's possible to control the robot and monitor surrounding area of the robot in real time in the region where the 3G(Generation) communication is possible. In addition, we can control the robot using the bluetooth instead of the mobile phone communication if the robot is in visual range.

Implementation of Real-time Video Surveillance System based on Multi-Screen in Mobile-phone Environment (스마트폰 환경에서의 멀티스크린 기반의 실시간 비디오 감시 시스템 개발)

  • Kim, Dae-Jin
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1009-1015
    • /
    • 2017
  • Recently, video surveillance is becoming more and more common as many camera are installed due to crime, terrorism, traffic and security. And systems that control cameras are becoming increasingly general. Video input from the installed camera is monitored by the multiscreen at the central control center, it is essential to simultaneously monitor multiscreen in real-time to quickly respond to situations or dangers. However, monitoring of multiscreen in a mobile environment such as a smart phone is not applied to hardware specifications or network bandwidth problems. For resolving these problems, in this paper, we propose a system that can monitor multiscreen in real-time in mobile-phone environment. We reconstruct the desired multiscreen through transcoding, it is possible to monitor continuously video streaming of multiple cameras, and to have the advantage of being mobile in mobile-phone environment.

Color matching application which can help color blind people based on smart phone (색맹인 사람들을 도울 수 있는 스마트 폰 기반 색상 매칭 애플리케이션)

  • Chung, Myoung-Beom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.65-72
    • /
    • 2015
  • In this paper, we proposed the color matching application based on smart phone which can help color blind people. For color blind people, the existing methods and applications supported color matching application which based on mobile. However, because the most research only showed the color value and color name through capture image of mobile camera, those cannot compare with capture image color of mobile camera and color of real object in real-time. To solve those problem, we proposed the color matching algorithm and developed the color matching application that can compare with color of mobile camera's capture image and color of real object in real-time, because the proposed application divides screen of smart phone into two parts and it show one part as capture image of smart phone camera and the other part as real-time camera image of smart phone. Color matching algorithm calculate cosine similarity using Red, Green, Blue, and Hue value of each image for real-time comparing and show matching result according to similarity value in real-time. To evaluate the performance of the proposed application, we tested a color matching experiment using the proposed application and the matching result was 98% success rate. Therefore, the proposed application will be a useful application which can help color blind people.

A Hybrid Positioning System for Indoor Navigation on Mobile Phones using Panoramic Images

  • Nguyen, Van Vinh;Lee, Jong-Weon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.3
    • /
    • pp.835-854
    • /
    • 2012
  • In this paper, we propose a novel positioning system for indoor navigation which helps a user navigate easily to desired destinations in an unfamiliar indoor environment using his mobile phone. The system requires only the user's mobile phone with its basic equipped sensors such as a camera and a compass. The system tracks user's positions and orientations using a vision-based approach that utilizes $360^{\circ}$ panoramic images captured in the environment. To improve the robustness of the vision-based method, we exploit a digital compass that is widely installed on modern mobile phones. This hybrid solution outperforms existing mobile phone positioning methods by reducing the error of position estimation to around 0.7 meters. In addition, to enable the proposed system working independently on mobile phone without the requirement of additional hardware or external infrastructure, we employ a modified version of a fast and robust feature matching scheme using Histogrammed Intensity Patch. The experiments show that the proposed positioning system achieves good performance while running on a mobile phone with a responding time of around 1 second.

A Study of Auto Focus Control Method for the Mobile Phone Camera (이동단말기 카메라 자동 초점 조절 방식에 관한 연구)

  • Kim, Gab-Yong;Kim, Young-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.1003-1006
    • /
    • 2005
  • Demand of Auto Focus for Camera module is increased very fast in these days and will be adapted to most of mobile phones in next few years instead of traditional method, fixed focus. To make auto focus function, 2 kinds of solutions, VCM(Voice Coil Motor) and Piezo linear motor are normally used. In this paper, VCM which commercially strong candidate for Auto focus mechanism was investigated to verify principles are match up to the actual operation. Auto focus algorithm is different between 1 chip and 2 chip solution. Normally 2 chip is more complicate than the other. To have best performance on this function, hysteresis and depth of field(DOF) table should be optimized.

  • PDF

Experimental realization of an imaging system using wavefront coding in mobile phone camera (휴대폰용 카메라 모듈에서 파면코딩을 통한 이미지 시스템 실험구현)

  • Kim, Jong-Pil;Lee, Sang-Hyuck;Park, No-Cheol;Park, Young-Pil;Park, Kyoung-Su
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.1
    • /
    • pp.36-40
    • /
    • 2009
  • We describe the experimental realization of image system using wavefront coding in 3-Mega pixel mobile phone camera. We designed aspheric lens to extend the depth of field (DOF) using wavefront coding. In addition, through the aspheric lens and lens barrel manufacturing, we obtained a raw image from a camera module. In our method, the acquired images are restored in the spatial frequency domain using the proposed filter and the spatial frequency response (SFR) is calculated. The proposed filters are composed of image denoising filter using low band pass filter in frequency domain and restoration filter for image restoration. Finally, we achieve an enhanced image by super-resolution image processing. Visual examples are given to demonstrate the performance of the proposed filter.

  • PDF