• 제목/요약/키워드: Mobile navigation

검색결과 1,081건 처리시간 0.027초

자율이동로봇의 영상인식 미로탐색시스템 (Maze Navigation System Using Image Recognition for Autonomous Mobile Robot)

  • 이정훈;강성호;엄기환
    • 제어로봇시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.429-434
    • /
    • 2005
  • In this paper, the maze navigation system using image recognition for autonomous mobile robot is proposed. The proposed maze navigation system searches the target by image recognition method based on ADALINE neural network. The infrared sensor system must travel all blocks to find target because it can recognize only one block information each time. But the proposed maze navigation system can reduce the number of traveling blocks because of the ability of sensing several blocks at once. Especially, due to the simplicity of the algorithm, the proposed method could be easily implemented to the system which has low capacity processor.

미지 동적 환경에서 다중 이동로봇의 GA-Fuzzy 기반 자율항법 (GA-Fuzzy based Navigation of Multiple Mobile Robots in Unknown Dynamic Environments)

  • 조연;이홍규
    • 전기학회논문지
    • /
    • 제66권1호
    • /
    • pp.114-120
    • /
    • 2017
  • The work present in this paper deals with a navigation problem for multiple mobile robots in unknown indoor environments. The environments are completely unknown to the robots; thus, proximity sensors installed on the robots' bodies must be used to detect information about the surroundings. The environments simulated in this work are dynamic ones which contain not only static but also moving obstacles. In order to guide the robot to move along a collision-free path and reach the goal, this paper presented a navigation method based on fuzzy approach. Then genetic algorithms were applied to optimize the membership functions and rules of the fuzzy controller. The simulation results verified that the proposed method effectively addresses the mobile robot navigation problem.

Command Fusion for Navigation of Mobile Robots in Dynamic Environments with Objects

  • Jin, Taeseok
    • Journal of information and communication convergence engineering
    • /
    • 제11권1호
    • /
    • pp.24-29
    • /
    • 2013
  • In this paper, we propose a fuzzy inference model for a navigation algorithm for a mobile robot that intelligently searches goal location in unknown dynamic environments. Our model uses sensor fusion based on situational commands using an ultrasonic sensor. Instead of using the "physical sensor fusion" method, which generates the trajectory of a robot based upon the environment model and sensory data, a "command fusion" method is used to govern the robot motions. The navigation strategy is based on a combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance based on a hierarchical behavior-based control architecture. To identify the environments, a command fusion technique is introduced where the sensory data of the ultrasonic sensors and a vision sensor are fused into the identification process. The result of experiment has shown that highlights interesting aspects of the goal seeking, obstacle avoiding, decision making process that arise from navigation interaction.

Onboard dynamic RGB-D simultaneous localization and mapping for mobile robot navigation

  • Canovas, Bruce;Negre, Amaury;Rombaut, Michele
    • ETRI Journal
    • /
    • 제43권4호
    • /
    • pp.617-629
    • /
    • 2021
  • Although the actual visual simultaneous localization and mapping (SLAM) algorithms provide highly accurate tracking and mapping, most algorithms are too heavy to run live on embedded devices. In addition, the maps they produce are often unsuitable for path planning. To mitigate these issues, we propose a completely closed-loop online dense RGB-D SLAM algorithm targeting autonomous indoor mobile robot navigation tasks. The proposed algorithm runs live on an NVIDIA Jetson board embedded on a two-wheel differential-drive robot. It exhibits lightweight three-dimensional mapping, room-scale consistency, accurate pose tracking, and robustness to moving objects. Further, we introduce a navigation strategy based on the proposed algorithm. Experimental results demonstrate the robustness of the proposed SLAM algorithm, its computational efficiency, and its benefits for on-the-fly navigation while mapping.

점진적 맵 업데이트를 위한 모바일 DBMS의 플래시메모리 페이지 관리 기법 (Flash-aware Page Management Policy of the Mobile DBMS for Incremental Map Update)

  • 민경욱;최정단;김주완
    • Spatial Information Research
    • /
    • 제20권5호
    • /
    • pp.67-76
    • /
    • 2012
  • 최근 모바일 디바이스에서 대용량 데이터 저장/관리를 위해 모바일 DBMS를 사용하려는 추세이며 특히 내비게이션 응용과 같이 대용량 맵 데이터의 저장/관리를 위한 모바일 DBMS의 저장구조 및 질의처리 방법에 대한 연구가 수행되었다. 무작위 데이터 접근(읽기/쓰기/변경) 질의가 대부분인 DBMS의 저장매체로 플래시메모리를 사용할 경우 성능이 저하된다. 그 이유는 플래시메모리는 특성상 순차적인 데이터 기록에는 성능이 좋지만 무작위 데이터 기록에는 성능이 나쁘다. 따라서 플래시메모리를 저장매체로 사용하는 모바일 DBMS의 경우 기존과 다른 저장 및 질의처리 기법이 필요하다. 이에 본 논문에서는 무작위 데이터 업데이트의 성능을 향상시키기 위한 DBMS의 페이지 관리 기법을 연구하였고 이를 점진적 맵 업데이트를 지원하는 내비게이션용 모바일 DBMS에 적용하여 실험하였고 성능을 검증하였다.

INS/GPS와 간접 되먹임 칼만 필터를 사용하는 이동 로봇의 복합 항법 시스템의 구현 (Implementation of a Hybrid Navigation System for a Mobile Robot by Using INS/GPS and Indirect Feedback Kalman Filter)

  • 김민지;주문갑
    • 대한임베디드공학회논문지
    • /
    • 제10권6호
    • /
    • pp.373-379
    • /
    • 2015
  • A hybrid navigation system is implemented to apply for a mobile robot. The hybrid navigation system consists of an inertial navigation system and a global positioning system. The inertial navigation system quickly calculates the position and the attitude of the robot by integrating directional accelerations, angular speed, and heading angle from a strap-down inertial measurement unit, but the results are available for a short time since it tends to diverge quickly. Global positioning system delivers position, heading angle, and traveling speed stably, but it has large deviation with slow update. Therefore, a hybrid navigation system uses the result from an inertial navigation system and corrects the result with the help of the global positioning system where an indirect feedback Kalman filter is used. We implement and confirm the performance of the hybrid navigation system through driving a car attaching it.

GPU 기반 SIFT 방법과 가상의 힘을 이용한 이동 로봇의 위치 인식 및 자율 주행 제어 (Localization and Autonomous Navigation Using GPU-based SIFT and Virtual Force for Mobile Robots)

  • 탁명환;주영훈
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1738-1745
    • /
    • 2016
  • In this paper, we present localization and autonomous navigation method using GPU(Graphics Processing Unit)-based SIFT(Scale-Invariant Feature Transform) algorithm and virtual force method for mobile robots. To do this, at first, we propose the localization method to recognize the landmark using the GPU-based SIFT algorithm and to update the position using extended Kalman filter. And then, we propose the A-star algorithm for path planning and the virtual force method for autonomous navigation of the mobile robot. Finally, we demonstrate the effectiveness and applicability of the proposed method through some experiments using the mobile robot with OPRoS(Open Platform for Robotic Services).

카메라를 이용한 이동 로보트 주행 제어 (Navigation control for a mobile robot using a camera)

  • 문순환;한민홍
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1994년도 춘계공동학술대회논문집; 창원대학교; 08월 09일 Apr. 1994
    • /
    • pp.42-48
    • /
    • 1994
  • This paper presents the navigation method for a mobile robot which uses a single camera and fluorescent lamp as a guide mark, projected on a convex mirror. The current position and heading direction of the mobile robot are obtained from the image of the guide mark. While the mobile robot travels to a goal position, the current position and heading direction of the mobile robot are updated continuously and the desired path and actual moving path are displayed on the monitor screen in real time. This proposed method eliminates the need to rotate the camera to track the guide mark, since a panoramic view of the surrounding area is available from the convex mirror, and natural guide marks such as usual florescent lamp on the ceiling or door frame can be used for navigation.

퍼지추론기반 센서융합 이동로봇의 장애물 회피 주행기법 (Fuzzy Inference Based Collision Free Navigation of a Mobile Robot using Sensor Fusion)

  • 진태석
    • 한국산업융합학회 논문집
    • /
    • 제21권2호
    • /
    • pp.95-101
    • /
    • 2018
  • This paper presents a collision free mobile robot navigation based on the fuzzy inference fusion model in unkonown environments using multi-ultrasonic sensor. Six ultrasonic sensors are used for the collision avoidance approach where CCD camera sensors is used for the trajectory following approach. The fuzzy system is composed of three inputs which are the six distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot's wheels, and three cost functions for the robot's movement, direction, obstacle avoidance, and rotation. For the evaluation of the proposed algorithm, we performed real experiments with mobile robot with ultrasonic sensors. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

모바일 로봇에서 RFID를 이용한 지도작성 알고리즘 개발 (Development of Map Building Algorithm for Mobile Robot by Using RFID)

  • 김시습;선정안;기창두
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.133-138
    • /
    • 2011
  • RFID system can be used to improve object recognition, map building and localization for robot area. A novel method of indoor navigation system for a mobile robot is proposed using RFID technology. The mobile robot With a RFID reader and antenna is able to find what obstacles are located where in circumstance and can build the map similar to indoor circumstance by combining RFID information and distance data obtained from sensors. Using the map obtained, the mobile robot can avoid obstacles and finally reach the desired goal by $A^*$ algorithm. 3D map which has the advantage of robot navigation and manipulation is able to be built using z dimension of products. The proposed robot navigation system is proved to apply for SLAM and path planning in unknown circumstance through numerous experiments.