• Title/Summary/Keyword: Mobile emission laboratory

Search Result 14, Processing Time 0.022 seconds

A Mobile Emission Laboratory for Car Chasing Experiment (차량 추적을 위한 이동형 자동차 배출가스 측정시스템(MEL) 구축)

  • Lee, Seok-Hwan;Kim, Hong-Seok;Lee, Seung-Jae;Bae, Gwi-Nam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.109-116
    • /
    • 2011
  • To measure the traffic pollutants with high temporal and spatial resolution under real conditions a mobile emission laboratory (MEL) was designed and built in KIST with close-cooperation with KIMM and Yonsei university. The equipment of the mini-van provides gas phase measurements of CO, NOx, $CO_2$, THC (Total hydrocarbon) and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and a condensation particle counter (CPC). The inlet sampling port above the bumper enables the chasing of different type of vehicles. This paper introduces the construction and technical details of the MEL and presents data from the car chasing experiment of diesel and CNG city bus. The dilution ratio was increased rapidly according to the chasing distance. Most particles from the diesel city bus were counted under 300 nm and the peak concentration of the particles was located between 40-60 nm. However, the most particles from the CNG city bus were nano particle counted under 50 nm.

On-Road Investigation of PM Emissions of Passenger Vehicles Fuelled with Diesel and Gasoline Using Mobile Emission Laboratory (이동형 배출가스 측정시스템(MEL)을 이용한 디젤 및 가솔린 차량에서 배출되는 입자상 물질 평가)

  • Lee, Seok-Hwan;Kim, Hong-Suk;Park, Jun-Hyuk;Woo, Se-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.737-744
    • /
    • 2012
  • A mobile emission laboratory (MEL) was designed to measure the amount of traffic pollutants, with high temporal and spatial resolution under real conditions. Equipment for the gas-phase measurements of CO, NOx, $CO_2$, and THC and for the measurement of the number, concentration, and size distribution of fine and ultra-fine particles by an FMPS and CPC was placed in a minivan. The exhausts of different types of vehicles can be sampled by an MEL. This paper describes the technical details of the MEL and presents data from the experiment in which a car chases passenger vehicles fuelled by diesel and gasoline. The particle number concentration in the exhaust of the diesel vehicle was higher than that of the gasoline vehicle. However, the diesel vehicle with a DPF emitted fewer particles than the vehicle equipped with a gasoline direct injection engine, with particle diameters over 50 nm.

On-road Investigation of PM Emissions of Diesel Aftertreatment Technologies (DPF, Urea-SCR) (차량 추적 실험을 통하여 디젤 후처리 장치가 입자상 물질 배출에 미치는 영향 파악)

  • Lee, Seok-Hwan;Kim, Hong-Seok;Park, Jun-Hyuk;Cho, Gyu-Baek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.92-99
    • /
    • 2011
  • To measure the traffic pollutants with high temporal and spatial resolution under real conditions, a mobile emission laboratory (MEL) was designed. The equipment of the mini-van provides gas phase measurements of CO, NOx, $CO_2$, THC (Total hydrocarbon) and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and a condensation particle counter (CPC). The inlet sampling port above the bumper enables the chasing of different type of vehicles. This paper introduces the technical details of the MEL and presents data from the car chasing experiment of diesel bus equipped with aftertreatment system. The dilution ratio was calculated by the ratio of ambient NOx and tail-pipe NOx. Most particles from the diesel bus were counted under 300 nm and the peak concentration of the particles was located between 30 and 60 nm. The total PM number emission from diesel bus equipped with DPF was 10 orders of magnitude lower compared to those emitted from base diesel bus. And the total PM number emission from diesel bus equipped with SCR was comparable to the particle emission from base diesel bus.

On-Road Investigation of PM Emissions of a City-Buses Fuelled by Diesel, CNG, and LPG Using a Mobile Emission Laboratory (이동형 배출가스 측정시스템(MEL)을 이용하여 디젤, CNG, LPG 시내버스에서 배출되는 입자상 물질 평가)

  • Lee, Seok-Hwan;Kim, Hong-Suk;Park, Jun-Hyuk;Yoon, Jun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.409-416
    • /
    • 2011
  • A mobile emission laboratory (MEL) was designed to measure the amount of traffic pollutants with high temporal and spatial resolution under real conditions. Equipment for gas-phase measurements of quantity of CO, NOx, $CO_2$, and THC and for the measurement of the number density and size distribution of fine and ultra-fine particles by a FMPS and a CPC were placed in a mini-van. The exhaust of different type of vehicles can be sampled by MEL. This paper describes the construction and technical details of the MEL and presents data from the experiment in which a car chases city buses fuelled by diesel, CNG, and LPG. The diameters of most particles in the exhaust of the diesel city bus were less than 300 nm and most of the particles had a diameter of 30-60 nm. However, most particles in the exhaust of the CNG and LPG city buses were nanoparticles (diameter: less than 50 nm).

On-road Investigation of PM Emissions according to Vehicle Fuels (Diesel, DME, and Bio-diesel) (Diesel, DME, Bio-diesel 연료가 실제 도로 주행 조건에서 입자상물질 배출에 미치는 영향 파악)

  • Lee, Seok-Hwan;Kim, Hong-Seok;Park, Jun-Hyuk;Cho, Gyu-Baek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.88-97
    • /
    • 2012
  • To measure the traffic pollutants with high temporal and spatial resolution under real conditions, a mobile emission laboratory (MEL) was designed. The equipment of the mini-van provides gas phase measurements of CO, NOx, CO2 and THC (Total hydrocarbon), and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and a condensation particle counter (CPC). The inlet sampling port above the bumper enables the chasing of different type of vehicles. This paper introduces the technical details of the MEL and presents data from the experiment in which a MEL chases a city bus fuelled by diesel, DME and Bio-diesel. The dilution ratio was calculated by the ratio of ambient NOx and tail-pipe NOx. Most particles from the bus fuelled by diesel were counted under 300 nm and the peak concentration of the particles was located between 30 and 60 nm. However, most particles in the exhaust of the bus fuelled by DME were nano-particles (diameter: less than 50 nm). The bus fuelled by Bio-diesel shows less particle emissions compare to diesel bus due to the presence of the oxygen in the fuel.

Characteristics of spatial distribution of ultrafine particle number concentration on the roads of Nowon-gu, Seoul (서울시 노원구 도로상 극미세입자 오염도 공간분포 특징)

  • Lee, Seung-Bok;Lee, Dong-Hun;Lee, Seung Jae;Jin, Hyoun-Cher;Bae, Gwi-Nam
    • Particle and aerosol research
    • /
    • v.7 no.1
    • /
    • pp.21-30
    • /
    • 2011
  • The spatial distributions of air pollutants, in particular, ultrafine particles near traffic congestion roads at urban areas need to reduce human exposure levels for protecting public health. In this study, the number concentrations of ultrafine particles larger than 5 nm were measured every second during driving on the major roads of Nowon-gu, Seoul for 1.6 h using a mobile emission laboratory on October 5, 2010. The ultrafine particle number concentrations ranged from 7,009 to $265,600particles/cm^3$ with an average of $55,570particles/cm^3$, and these levels were comparable to concentrations of ultrafine particles larger than 3 or 7 nm on the arterial roads at urban areas in Los Angeles, USA and Zurich, Switzerland. It was frequently observed that the ultrafine particle number increased rapidly when vehicle speed was accelerated and it decreased sharply when vehicle speed was decelerated. The high peak events of ultrafine particle concentration larger than $200,000particles/cm^3$ were observed seven times during the measurement period. From the three repeated measurements during the short period of 50 min, it was concluded that the ultrafine particle number concentration on the road was significantly time-dependent. This on-road measurement approach can be utilized to manage vehicle-related air pollution in urban.

Analysis on the Correction Factor of Emission Factors and Verification for Fuel Consumption Differences by Road Types and Time Using Real Driving Data (실 주행 자료를 이용한 도로유형·시간대별 연료소모량 차이 검증 및 배출계수 보정 지표 분석)

  • LEE, Kyu Jin;CHOI, Keechoo
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.5
    • /
    • pp.449-460
    • /
    • 2015
  • The reliability of air quality evaluation results for green transportation could be improved by applying correct emission factors. Unlike previous studies, which estimated emission factors that focused on vehicles in laboratory experiments, this study investigates emission factors according to road types and time using real driving data. The real driving data was collected using a Portable Activity Monitoring System (PAMS) according to road types and time, which it compared and analyzed fuel consumption from collected data. The result of the study shows that fuel consumption on national highway is 17.33% higher than the fuel consumption on expressway. In addition, the average fuel consumption of peak time is 4.7% higher than that of non-peak time for 22.5km/h. The difference in fuel consumption for road types and time is verified using ANOCOVA and MANOVA. As a result, the hypothesis of this study - that fuel consumption differs according to road types and time, even if the travel speed is the same - has proved valid. It also suggests correction factor of emission factors by using the difference in fuel consumption. It is highly expected that this study can improve the reliability of emissions from mobile pollution sources.

Spectrally encapsulated OFDM: Vectorized structure with minimal complexity

  • Kim, Myungsup;Kwak, Do Young;Jung, Jiwon;Kim, Ki-Man
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.660-673
    • /
    • 2021
  • To efficiently use frequency resources, the next 6th generation mobile communication technology must solve the problem of out-of-band emission (OoBE) of cyclic prefix (CP) orthogonal frequency division multiplexing (OFDM), which is not solved in 5th generation technology. This study describes a new zero insertion technique to replace an existing filtering scheme to solve this internal problem in OFDM signals. In the development of the proposed scheme, a precoder with a two-dimensional structure is first designed by generating a two-dimensional mapper and using the specialty of each matrix. A spectral shaping technique based on zero insertion instead of a long filter is proposed, so it can be applied not only to long OFDM symbols, but also very short ones. The proposed method shows that the transmitted signal is completely blocked at the bandwidth boundaries of signals according to the current standards, and it is confirmed that the proposed scheme is ideal with respect to bit error rate (BER) performance because its BER is the same as that of CP-OFDM. In addition, the proposed scheme can transformed into a real time structure through vectorizing process with minimal complexity.