• Title/Summary/Keyword: Mobile Ultra-Broadband

Search Result 13, Processing Time 0.015 seconds

Design of a broadband CP antenna for RFID readers (RFID 리더용 광대역 원편파 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1759-1764
    • /
    • 2015
  • In this paper, we considered a design method of a circular polarization (CP) antenna for UHF (ultra high frequency) RFID (Radio Frequency IDentification) readers. The antenna is a dual-fed circular microstrip patch which produces right-handed CP. Quadrature hybrid coupler is used for dual feeding. The outputs of the coupler and circular patch are connected through copper wires, and the inductive reactance produced by the connecting wires is compensated by a ring-shaped slot inserted inside the circular patch. The effects of the geometrical parameters of the proposed antenna on the antenna performance are examined, and the parameters are adjusted to be suitable for the operation in North American UHF RFID band (902-928 MHz), which includes domestic UHF RFID band. The antenna is fabricated, and the experiment results reveal a frequency band of 854-993 MHz for a voltage standing wave ratio < 2. The fabricated antenna is connected to a commercial RFID reader, and it showed a good performance of tag identification.

5G Network Resource Allocation and Traffic Prediction based on DDPG and Federated Learning (DDPG 및 연합학습 기반 5G 네트워크 자원 할당과 트래픽 예측)

  • Seok-Woo Park;Oh-Sung Lee;In-Ho Ra
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.33-48
    • /
    • 2024
  • With the advent of 5G, characterized by Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC), efficient network management and service provision are becoming increasingly critical. This paper proposes a novel approach to address key challenges of 5G networks, namely ultra-high speed, ultra-low latency, and ultra-reliability, while dynamically optimizing network slicing and resource allocation using machine learning (ML) and deep learning (DL) techniques. The proposed methodology utilizes prediction models for network traffic and resource allocation, and employs Federated Learning (FL) techniques to simultaneously optimize network bandwidth, latency, and enhance privacy and security. Specifically, this paper extensively covers the implementation methods of various algorithms and models such as Random Forest and LSTM, thereby presenting methodologies for the automation and intelligence of 5G network operations. Finally, the performance enhancement effects achievable by applying ML and DL to 5G networks are validated through performance evaluation and analysis, and solutions for network slicing and resource management optimization are proposed for various industrial applications.

Development of ATSC3.0 based UHDTV Broadcasting System providing Ultra-high-quality Service that supports HDR/WCG Video and 3D Audio, and a Fixed UHD/Mobile HD Service (HDR/WCG 비디오와 3D 오디오를 지원하는 초고품질 방송서비스와 고정 UHD/이동 HD 방송 서비스를 제공하는 ATSC 3.0 기반 UHDTV 방송 시스템 개발)

  • Ki, Myungseok;Seok, Jinwuk;Beack, Seungkwon;Jang, Daeyoung;Lee, Taejin;Kim, Hui Yong;Oh, Hyeju;Lim, Bo-mi;Bae, Byungjun;Kim, Heung Mook;Choi, Jin Soo
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.829-849
    • /
    • 2017
  • Due to the large-scale TV display, the convergence of broadcasting and broadband, and the advancement of signal compression and transmission technology, terrestrial digital broadcasting has evolved into UHD broadcasting capable of providing simultaneous broadcasting of fixed UHD and mobile HD. The Korean standard for terrestrial UHDTV broadcasting is based on ATSC 3.0, the broadcasting standard of North America. The terrestrial UHDTV broadcasting standard chose that as a new AV codec standard, HEVC video codec which can compress with higher efficiency compared to AVC, and MPEG-H 3D audio codec for realistic audio. Also, DASH and MMT are adopted as transmission format instead of MPEG-2 TS to support broadband as well as broadcasting network, and in order to provide 4K UHD/mobile HD service simultaneously ROUTE multiplexing technology is applied. In this paper, we propose an audio/video encoder, which is required to provide HDR/WCG supported high quality video service, 10.2 channel/4 object supporting stereo sound service, fixed UHD and mobile HD simultaneous broadcasting service based on ATSC3.0, also we implemented the ATSC 3.0 LDM system for ROUTE/DASH packager, multiplexing system and physical layer transmission/reception, and verified the service ability by applying it to real time broadcast environment.