• Title/Summary/Keyword: Mobile SLAM

Search Result 99, Processing Time 0.025 seconds

Simultaneous Localization and Mapping of Mobile Robot using Digital Magnetic Compass and Ultrasonic Sensors (전자 나침반과 초음파 센서를 이용한 이동 로봇의 Simultaneous Localization and Mapping)

  • Kim, Ho-Deok;Lee, Hae-Gang;Seo, Sang-Uk;Jang, In-Hun;Sim, Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.37-40
    • /
    • 2007
  • Digital Magnetic Compass(DMC)는 실내의 전자기적 요소나 강한 자성체 건물구조에서는 쉽게 방해를 받던 Compass보다 실내에서 간섭에 강한 특징을 가지고 있다. 그리고 적외선 센서와 초음파 센서는 서로 물체와의 거리를 보완적으로 계산해 줄뿐만 아니라 값싼 센서로서 경제적인 이점을 가지고 있어 Simultaneous Localization and Mapping(SLAM)에서 많이 사용하고 있다. 본 논문에서는 자율 이동 로봇의 구동에서 Digital Magnetic Compass(DMC)와 Ultrasonic Sensors을 이용한 SLAM의 구현에 대해 연구하였다. 로봇의 특성상 한정된 Sensing 데이터만으로 방향과 위치를 파악하고 그 데이터 값으로 가능한 빠르게 Localization을 하여야 한다. 그러므로 자율 이동 로봇에서의 SLAM 적용함으로 Localization 구현과 Mapping을 수행하고 SLAM 구현상의 주된 연구 중의 하나인 Kid Napping 문제에 중점을 두고 연구한다. 특히, Localization 구현을 수행을 위한 데이터의 Sensing 방법으로 적외선 센서와 초음파 센서를 같이 사용하였고 비슷한 위치의 데이터 값이 주어지거나 사전 정보 없는 상태에서는 로봇의 상태를 파악하기 위해서 DMC을 같이 사용하여 더 정확한 위치를 측정에 활용하였다.

  • PDF

A Robot Coverage Algorithm Integrated with SLAM for Unknown Environments (미지의 환경에서 동작하는 SLAM 기반의 로봇 커버리지 알고리즘)

  • Park, Jung-Kyu;Jeon, Heung-Seok;Noh, Sam-H.
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.61-69
    • /
    • 2010
  • An autonomous robot must have a global workspace map in order to cover the complete workspace. However, most previous coverage algorithms assume that they have a grid workspace map that is to be covered before running the task. For this reason, most coverage algorithms can not be applied to complete coverage tasks in unknown environments. An autonomous robot has to build a workspace map by itself for complete coverage in unknown environments. Thus, we propose a new DmaxCoverage algorithm that allows a robot to carry out a complete coverage task in unknown environments. This algorithm integrates a SLAM algorithm for simultaneous workspace map building. Experimentally, we verify that DmaxCoverage algorithm is more efficient than previous algorithms.

Three-dimensional Map Construction of Indoor Environment Based on RGB-D SLAM Scheme

  • Huang, He;Weng, FuZhou;Hu, Bo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.45-53
    • /
    • 2019
  • RGB-D SLAM (Simultaneous Localization and Mapping) refers to the technology of using deep camera as a visual sensor for SLAM. In view of the disadvantages of high cost and indefinite scale in the construction of maps for laser sensors and traditional single and binocular cameras, a method for creating three-dimensional map of indoor environment with deep environment data combined with RGB-D SLAM scheme is studied. The method uses a mobile robot system equipped with a consumer-grade RGB-D sensor (Kinect) to acquire depth data, and then creates indoor three-dimensional point cloud maps in real time through key technologies such as positioning point generation, closed-loop detection, and map construction. The actual field experiment results show that the average error of the point cloud map created by the algorithm is 0.0045m, which ensures the stability of the construction using deep data and can accurately create real-time three-dimensional maps of indoor unknown environment.

Collision Avoidance Using Omni Vision SLAM Based on Fisheye Image (어안 이미지 기반의 전방향 영상 SLAM을 이용한 충돌 회피)

  • Choi, Yun Won;Choi, Jeong Won;Im, Sung Gyu;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.210-216
    • /
    • 2016
  • This paper presents a novel collision avoidance technique for mobile robots based on omni-directional vision simultaneous localization and mapping (SLAM). This method estimates the avoidance path and speed of a robot from the location of an obstacle, which can be detected using the Lucas-Kanade Optical Flow in images obtained through fish-eye cameras mounted on the robots. The conventional methods suggest avoidance paths by constructing an arbitrary force field around the obstacle found in the complete map obtained through the SLAM. Robots can also avoid obstacles by using the speed command based on the robot modeling and curved movement path of the robot. The recent research has been improved by optimizing the algorithm for the actual robot. However, research related to a robot using omni-directional vision SLAM to acquire around information at once has been comparatively less studied. The robot with the proposed algorithm avoids obstacles according to the estimated avoidance path based on the map obtained through an omni-directional vision SLAM using a fisheye image, and returns to the original path. In particular, it avoids the obstacles with various speed and direction using acceleration components based on motion information obtained by analyzing around the obstacles. The experimental results confirm the reliability of an avoidance algorithm through comparison between position obtained by the proposed algorithm and the real position collected while avoiding the obstacles.

The GEO-Localization of a Mobile Mapping System (모바일 매핑 시스템의 GEO 로컬라이제이션)

  • Chon, Jae-Choon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.555-563
    • /
    • 2009
  • When a mobile mapping system or a robot is equipped with only a GPS (Global Positioning System) and multiple stereo camera system, a transformation from a local camera coordinate system to GPS coordinate system is required to link camera poses and 3D data by V-SLAM (Vision based Simultaneous Localization And Mapping) to GIS data or remove the accumulation error of those camera poses. In order to satisfy the requirements, this paper proposed a novel method that calculates a camera rotation in the GPS coordinate system using the three pairs of camera positions by GPS and V-SLAM, respectively. The propose method is composed of four simple steps; 1) calculate a quaternion for two plane's normal vectors based on each three camera positions to be parallel, 2) transfer the three camera positions by V-SLAM with the calculated quaternion 3) calculate an additional quaternion for mapping the second or third point among the transferred positions to a camera position by GPS, and 4) determine a final quaternion by multiplying the two quaternions. The final quaternion can directly transfer from a local camera coordinate system to the GPS coordinate system. Additionally, an update of the 3D data of captured objects based on view angles from the object to cameras is proposed. This paper demonstrated the proposed method through a simulation and an experiment.

SLAM Method by Disparity Change and Partial Segmentation of Scene Structure (시차변화(Disparity Change)와 장면의 부분 분할을 이용한 SLAM 방법)

  • Choi, Jaewoo;Lee, Chulhee;Eem, Changkyoung;Hong, Hyunki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.132-139
    • /
    • 2015
  • Visual SLAM(Simultaneous Localization And Mapping) has been used widely to estimate a mobile robot's location. Visual SLAM estimates relative motions with static visual features over image sequence. Because visual SLAM methods assume generally static features in the environment, we cannot obtain precise results in dynamic situation including many moving objects: cars and human beings. This paper presents a stereo vision based SLAM method in dynamic environment. First, we extract disparity map with stereo vision and compute optical flow. We then compute disparity change that is the estimated flow field between stereo views. After examining the disparity change value, we detect ROIs(Region Of Interest) in disparity space to determine dynamic scene objects. In indoor environment, many structural planes like walls may be determined as false dynamic elements. To solve this problem, we segment the scene into planar structure. More specifically, disparity values by the stereo vision are projected to X-Z plane and we employ Hough transform to determine planes. In final step, we remove ROIs nearby the walls and discriminate static scene elements in indoor environment. The experimental results show that the proposed method can obtain stable performance in dynamic environment.

SLAM with Visually Salient Line Features in Indoor Hallway Environments (실내 복도 환경에서 선분 특징점을 이용한 비전 기반의 지도 작성 및 위치 인식)

  • An, Su-Yong;Kang, Jeong-Gwan;Lee, Lae-Kyeong;Oh, Se-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.40-47
    • /
    • 2010
  • This paper presents a simultaneous localization and mapping (SLAM) of an indoor hallway environment using Rao-Blackwellized particle filter (RBPF) along with a line segment as a landmark. Based on the fact that fluent line features can be extracted around the ceiling and side walls of hallway using vision sensor, a horizontal line segment is extracted from an edge image using Hough transform and is also tracked continuously by an optical flow method. A successive observation of a line segment gives initial state of the line in 3D space. For data association, registered feature and observed feature are matched in image space through a degree of overlap, an orientation of line, and a distance between two lines. Experiments show that a compact environmental map can be constructed with small number of horizontal line features in real-time.

Implementation of Wheelchair Robot Applying SLAM and Global Path Planning Methods Suitable for Indoor Autonomous Driving (실내 자율주행에 적합한 SLAM과 전역경로생성 방법을 적용한 휠체어로봇 구현)

  • Baek, Su-Jin;Kim, A-Hyeon;Kim, Jong-Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.293-297
    • /
    • 2021
  • This paper presents how to create a 3D map and solve problems related to generating a global path planning for navigation. Map creation and localization were performed using the RTAB-Map package to create a 3D map of the environment. In addition, when the target point is within the obstacle space, the problem of not generating a global path was solved using the asr_navfn package. The performance of the proposed system is validated through experiments with a wheelchair-type robot.

Survey on Visual Navigation Technology for Unmanned Systems (무인 시스템의 자율 주행을 위한 영상기반 항법기술 동향)

  • Kim, Hyoun-Jin;Seo, Hoseong;Kim, Pyojin;Lee, Chung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.2
    • /
    • pp.133-139
    • /
    • 2015
  • This paper surveys vision based autonomous navigation technologies for unmanned systems. Main branches of visual navigation technologies are visual servoing, visual odometry, and visual simultaneous localization and mapping (SLAM). Visual servoing provides velocity input which guides mobile system to desired pose. This input velocity is calculated from feature difference between desired image and acquired image. Visual odometry is the technology that estimates the relative pose between frames of consecutive image. This can improve the accuracy when compared with the exisiting dead-reckoning methods. Visual SLAM aims for constructing map of unknown environment and determining mobile system's location simultaneously, which is essential for operation of unmanned systems in unknown environments. The trend of visual navigation is grasped by examining foreign research cases related to visual navigation technology.

A new Observation Model to Improve the Consistency of EKF-SLAM Algorithm in Large-scale Environments (광범위 환경에서 EKF-SLAM의 일관성 향상을 위한 새로운 관찰모델)

  • Nam, Chang-Joo;Kang, Jae-Hyeon;Doh, Nak-Ju Lett
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • This paper suggests a new observation model for Extended Kalman Filter based Simultaneous Localization and Mapping (EKF-SLAM). Since the EKF framework linearizes non-linear functions around the current estimate, the conventional line model has large linearization errors when a mobile robot locates faraway from its initial position. On the other hand, the model that we propose yields less linearization error with respect to the landmark position and thus suitable in a large-scale environment. To achieve it, we build up a three-dimensional space by adding a virtual axis to the robot's two-dimensional coordinate system and extract a plane by using a detected line on the two-dimensional space and the virtual axis. Since Jacobian matrix with respect to the landmark position has small value, we can estimate the position of landmarks better than the conventional line model. The simulation results verify that the new model yields less linearization errors than the conventional line model.