• Title/Summary/Keyword: Mobile Power Generator

Search Result 32, Processing Time 0.023 seconds

A study on the development of DC-DC converter for low-power DSC

  • Park, Sung-Joon;Kim, Whi-Young
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.52-56
    • /
    • 2009
  • In this research, we have studied the development of dc-dc converter suitable for the driving of mobile instruments by using a dye-sensitized solar cell(DSC). We also have designed a interlocking circuit. The circuit makes power generation be saved in one battery and concurrently be discharged in the other battery. As this application, mobile devices such as MP3, cellular phone are operated by using power generator from DSC during the daytime and they can be operated by using the saving energy of the daytime during the night. Consequently, it has a simple and robust circuit configuration. Besides, we designed dc-dc converter circuit to drive low power instruments by using NMOS switch and PMOS rectifier. Operational modes are analysed, and then validity of the proposed interface circuit is verified through DCS.

Flame Stabilization Mechanism of a Micro Cyclone Combustor (마이크로 사이클론 연소기의 화염 안정화 기구)

  • Oh, Chang-Bo;Choi, Byung-Il;Han, Yong-Shik;Kim, Myung-Bae;Hwang, Cheol-Hong
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.139-144
    • /
    • 2007
  • A micro cyclone combustor was developed to be used as a component of mobile power generator (MPG). The cyclone combustor was designed so that fuel and air were supplied to the combustion chamber separately to prevent a flash-back. The flame shape stabilized inside the micro cyclone combustor was visualized experimentally and the flow field and the combustion characteristics of the combustor were investigated numerically. The global equivalence ratio (${\Phi}$), defined using the fuel and air flow rates, was introduced to examine the overall flow and flame features of the combustor. The flame stabilization mechanism could be well understood using the velocity distribution inside the combustor. For only non-reacting case, it was found that a weak recirculating zone was formed upper the fuel-supplying tube in case of ${\Phi}$ < 1.0. It was also found that small regions that have a negative axial velocity exist near the fuel injection ports for both of non-reacting and reacting case. It was identify that a flame front was stabilized at the negative axial velocity regions near the fuel injection ports.

  • PDF

Motion planning of a steam generator mobile tube-inspection robot

  • Xu, Biying;Li, Ge;Zhang, Kuan;Cai, Hegao;Zhao, Jie;Fan, Jizhuang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1374-1381
    • /
    • 2022
  • Under the influence of nuclear radiation, the reliability of steam generators (SGs) is an important factor in the efficiency and safety of nuclear power plant (NPP) reactors. Motion planning that remotely manipulates an SG mobile tube-inspection robot to inspect SG heat transfer tubes is the mainstream trend of NPP robot development. To achieve motion planning, conditional traversal is usually used for base position optimization, and then the A* algorithm is used for path planning. However, the proposed approach requires considerable processing time and has a single expansion during path planning and plan paths with many turns, which decreases the working speed of the robot. Therefore, to reduce the calculation time and improve the efficiency of motion planning, modifications such as the matrix method, improved parent node, turning cost, and improved expanded node were proposed in this study. We also present a comprehensive evaluation index to evaluate the performance of the improved algorithm. We validated the efficiency of the proposed method by planning on a tube sheet with square-type tube arrays and experimenting with Model SG.

Development of Monitoring System for Wind Power Generator Penetration Type Aviation Fault Indication Light (풍력발전기 관통형 항공장애표시등 원격감시시스템 개발)

  • Han, Man Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.70-71
    • /
    • 2021
  • In this paper, we propose a new system that improves the management efficiency of aviation fault indication light of the wind power generator. By applying an LTE mobile communication network to the existing aviation fault indication light, the proposed system remotely checks the status, voltage, current, and temperature information of the light.

  • PDF

Human-Powered Generator designed for Sustainable Driving (고출력 지속이 가능한 인체 구동 방식의 자가 발전기 개발)

  • Lim, Yoon-Ho;Yang, Yoonseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.135-142
    • /
    • 2015
  • Human-powered self-generating devices have been attractive with its operation characteristic independent from outer environment such as weather condition and wind speed. However, conventional self-generators have low electric power output due to their weakly-coupled electromagnetic structure. More importantly, rotary crank motion which is usually adopted by conventional self-generator to generate electricity requires specific skeletal muscles to maintain large torque circular motion and consequently, causes fatigue on those muscles before it can generate enough amount of electricity for any practical application. Without improvement in electric power output and usability, the human-powered self-generator could not be used in everyday life. This study aims to develop a human-powered self-generator which realized a strong electromagnetic coupling in a closed-loop tubular structure (hula-hoop shape) for easy and steady long-term driving as well as larger electric output. The performance and usability of the developed human-powered generator is verified through experimental comparison with a commercial one. Additionally, human workload which is a key element of a human-powered generator but not often considered elsewhere, is estimated based on metabolic energy expenditure measured respiratory gas analyzer. Further study will focus on output and portability enhancement, which can contribute to the continuous power supply of mobile equipments.

A Study on Thermoelectric Converter Using DMFC (Direct Methanol Fuel Cell) System (DMFC 시스템에 사용한 열전 변환기에 관한 연구)

  • Zhang, Jing-Liang;Moon, Chae-Joo;Chang, Young-Hak;Cheang, Eui-Heang;Kim, Tae-Gon
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.92-94
    • /
    • 2007
  • This article describes a thermoelectric converter, which is powered by thermoelectric (TE) power modules. This system uses TE devices that directly convert heat energy to electricity to power a converter using direct methanol fuel ceil (DMFC) system. The characteristics of the TE module were tested at different temperatures. A boost BC-DC converter was designed and controlled by a power-supply controller chip. Efficiency of about 80% can be achieved and because the thermoelectric converter system has not moving parts and has a small volume, the system can be carried about easily and conveniently to supply portable electric equipment and this is very important for some mobile equipment.

  • PDF

Design of Optimal Kinetic Energy Harvester Using Double Pendulum (이중진자를 이용한 최적의 운동에너지 하베스터 설계)

  • Lee, Chibum;Park, Hee Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.619-624
    • /
    • 2015
  • Owing to miniaturization and low-power electronics, mobile, implanted, and wearable devices have become the main trends of electronics during the past decade. There has been much research regarding energy harvesting to achieve battery-free or self-powered devices. The optimal design problems of a double-pendulum kinetic-energy harvester from human motion are studied in this paper. For the given form factor, the weight of the harvester, and the known human excitation, the optimal design problem is solved using a dynamic non-linear double-pendulum model and an electric generator. The average electrical power was selected as the performance index for the given time period. A double-pendulum harvester was proven to be more efficient than a single-pendulum harvester when the appropriate parameters were used.

Review Criteria for Reliability from Analysis of LOOP frequency in NPPs (소외전원상실사고 빈도수 분석을 통한 원전 신뢰도 검토기준)

  • Moon, Su-Cheol;Kim, Kern-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.300-305
    • /
    • 2013
  • LOOP(Loss of Offsite Power) and SBO(Station Blackout) events have been occurring in nuclear power plants should be reviewed and be controlled on important electrical equipments by professional engineer to prevent and to safety improvement from safety assessment and reliability analysis report. LOOP and SBO occasionally happened by internal or external causes. This paper contained that LOOP frequency in the United States NPPs and in the domestic NPPs have compared and analyzed data by the past lessons and probabilistic statistics. Additionally will be installed MG(Mobile Generator) according to the lessons of Fukushima nuclear accident in Japan, which CDF(Core Damage Frequency) and LOOP frequency have reconsidered. And this paper proposed to reduce reliability criteria using PSA(Probabilistic Safety Analysis).

Study on the Electromagnetic Excitation System for the Measurement of Dynamic Coefficients of Air Foil Bearing for High Speed Rotor (초고속 회전체용 공기 포일 베어링의 동특성 계수 측정을 위한 전자석 가진장치에 관한 연구)

  • Park, Cheol-Hoon;Choi, Sang-Kyu;Ham, Sang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.18-25
    • /
    • 2013
  • Recently the requirement of long-term mobile energy source for mobile robot or small-sized unmanned vehicle is highly increased, and the micro turbine generator(MTG) which is known to have high energy and power density is under development. MTG is designed to have air foil bearing and high speed rotor of which operating speed is 400,000rpm. In the development stage of high speed rotor and bearing, stability analysis for the full operational speed range is essential and the dynamic coefficients such as stiffness and damping coefficients of bearing depending on the rotational speed are required for that. Although perturbation method is usually used to identify the dynamic coefficients, it's not easy to give the perturbation to the high speed rotating rotor. In this study, we present the dynamic coefficients measurement system for air foil bearing which consists of electromagnets, gap sensors, high speed motor and controller. This measurement system can exert the sine sweep force to the rotor-bearing, measure the displacement of rotor and get FRF(Frequency response function) of rotor-bearing. The least square estimation method is applied to identify the dynamic coefficients of bearing from the measured frequency response at the different rpm and the identified dynamic coefficients for the wide rotational speed range are presented.

Development of Operation Control and AC/DC Conversion Integrated Device for DC Power Application of Small Wind Power Generation System (소형 풍력발전시스템의 직류전원 적용을 위한 운전제어 및 AC/DC변환 통합장치 개발)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.179-184
    • /
    • 2019
  • In many countries, such as developing countries where electricity is scarce, small wind turbines in the form of Off Grid are an effective solution to solve power supply problems. In some countries, the expansion of power systems and the decline of electricity-intensive areas have led to the use of small wind power in urban road lighting, mobile communications base stations, aquaculture and seawater desalination. With this change, the size of the small wind power industry is expected to have greater potential than large-scale wind power. In the case of small wind power generators, the generator is controlled at a variable speed, and the voltage and current generated by the generator have many harmonic components. To solve this problem, the AC to DC converter to be studied in this paper is a three-phase step-up type converter with a single switch. The inductor current is controlled in discontinuous mode, and has a characteristic of having a unit power factor by eliminating the harmonic of the input current. The proposed converter is composed of LCL filter and three phase rectification boost converter at the input stage and a single phase full bridge for grid connection. It is a control system with energy storage system(ESS) that the system stabilization can be pursued against the electric power.