• Title/Summary/Keyword: Mobile Object Tracking

Search Result 160, Processing Time 0.023 seconds

Learning Methods for Effective Object Tracking in 3D Storytelling Augmented Reality (3D 스토리텔링 증강현실에서 효과적인 객체 추적을 위한 학습 방법)

  • Choi, Dae han;Han, Woo ri;Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.46-50
    • /
    • 2016
  • Recently, Depending on expectancy effect and ripple effect of augmented reality, the convergence between augmented reality and culture & arts are being actively conducted. This paper proposes a learning method for effective object tracking in 3D storytelling augmented reality in cultural properties. The proposed system is based on marker-less tracking, and there are four modules that are recognition, tracking, detecting and learning module. Recognition module is composed of SURF and LSH, and then this module generates standard object information. Tracking module tracks an object using object tracking based on reliability. This information is stored in Learning module along with learned time information. Detecting module finds out the object based on having the best possible knowledge available among the learned objects information, when the system fails to track. Also, it proposes a method for robustly implementing a 3D storytelling augmented reality in cultural properties in the future.

Real-time 3D multi-pedestrian detection and tracking using 3D LiDAR point cloud for mobile robot

  • Ki-In Na;Byungjae Park
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.836-846
    • /
    • 2023
  • Mobile robots are used in modern life; however, object recognition is still insufficient to realize robot navigation in crowded environments. Mobile robots must rapidly and accurately recognize the movements and shapes of pedestrians to navigate safely in pedestrian-rich spaces. This study proposes real-time, accurate, three-dimensional (3D) multi-pedestrian detection and tracking using a 3D light detection and ranging (LiDAR) point cloud in crowded environments. The pedestrian detection quickly segments a sparse 3D point cloud into individual pedestrians using a lightweight convolutional autoencoder and connected-component algorithm. The multi-pedestrian tracking identifies the same pedestrians considering motion and appearance cues in continuing frames. In addition, it estimates pedestrians' dynamic movements with various patterns by adaptively mixing heterogeneous motion models. We evaluate the computational speed and accuracy of each module using the KITTI dataset. We demonstrate that our integrated system, which rapidly and accurately recognizes pedestrian movement and appearance using a sparse 3D LiDAR, is applicable for robot navigation in crowded spaces.

Design of Vehicle Location Tracking System using Mobile Interface

  • Chung, Ji-Moon;Choi, Sung;Ryu, Keun-Ho
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.185-202
    • /
    • 2004
  • Recent development in wireless computing and GPS technology cause the active development in the application system of location information in real-time environment such as transportation vehicle management, air traffic control and location based system. Especially, study about vehicle location tracking system, which monitors the vehicle's position in a control center, is appeared to be a representative application system. However, the current vehicle location tracking system can not provide vehicle position information that is not stored in a database at a specific time to users. We designed a vehicle location tracking system that could track vehicle location using mobile interface such as PDA. The proposed system consist of a vehicle location retrieving server and a mobile interface. It is provide not only the moving vehicle's current location but also the position at a past and future time which is not stored in database for users.

  • PDF

Cooperative control of multiple mobile robots (다 개체 이동 로봇의 협동 제어)

  • 이경노;이두용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.720-723
    • /
    • 1997
  • This paper presents a cooperative control method for multiple robots. This method is based on local sensors. The proposed method integrates all information obtained by local perception through a set of sensors and generates commands without logical conflicts in designing control logic. To control multiple robots effectively, a global control strategy is proposed. These methods are constructed by using AND/OR logic and transition firing sequences in Petri nets. To evaluate these methods, the object-searching task is introduced. This task is to search an object like a box by two robots and consists of two sub-tasks, i.e., a wall tracking task and a robot tracking task. Simulation results for the object-searching task and the wall tracking task are presented to show the effectiveness of the method.

  • PDF

INTELLIGENT CONTROL STRATEGY FOR A MOBILE VEHICLE WITH NEURCOMPUTER

  • Sugisaka, Masanori;Wang, Xin;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.815-818
    • /
    • 1997
  • In this paper, an intelligent control strategy for a mobile vehicle, based on the technology of the artificial neural network in a Neurocomputer, is presented. The mobile vehicle learned recognizing and driving knowledge by a neurocomputer. Moment Invariants computation was used to extract the shape of objects. The technologies of both neurocomputer and Neumann-type computer are applied into the control system, and make the mobile vehicle be capable of tracking designated objects and avoiding obstacles.

  • PDF

Scale Invariant Single Face Tracking Using Particle Filtering With Skin Color

  • Adhitama, Perdana;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • v.9 no.3
    • /
    • pp.9-14
    • /
    • 2013
  • In this paper, we will examine single face tracking algorithms with scaling function in a mobile device. Face detection and tracking either in PC or mobile device with scaling function is an unsolved problem. Standard single face tracking method with particle filter has a problem in tracking the objects where the object can move closer or farther from the camera. Therefore, we create an algorithm which can work in a mobile device and perform a scaling function. The key idea of our proposed method is to extract the average of skin color in face detection, then we compare the skin color distribution between the detected face and the tracking face. This method works well if the face position is located in front of the camera. However, this method will not work if the camera moves closer from the initial point of detection. Apart from our weakness of algorithm, we can improve the accuracy of tracking.

Modified Particle Filtering for Unstable Handheld Camera-Based Object Tracking

  • Lee, Seungwon;Hayes, Monson H.;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.2
    • /
    • pp.78-87
    • /
    • 2012
  • In this paper, we address the tracking problem caused by camera motion and rolling shutter effects associated with CMOS sensors in consumer handheld cameras, such as mobile cameras, digital cameras, and digital camcorders. A modified particle filtering method is proposed for simultaneously tracking objects and compensating for the effects of camera motion. The proposed method uses an elastic registration algorithm (ER) that considers the global affine motion as well as the brightness and contrast between images, assuming that camera motion results in an affine transform of the image between two successive frames. By assuming that the camera motion is modeled globally by an affine transform, only the global affine model instead of the local model was considered. Only the brightness parameter was used in intensity variation. The contrast parameters used in the original ER algorithm were ignored because the change in illumination is small enough between temporally adjacent frames. The proposed particle filtering consists of the following four steps: (i) prediction step, (ii) compensating prediction state error based on camera motion estimation, (iii) update step and (iv) re-sampling step. A larger number of particles are needed when camera motion generates a prediction state error of an object at the prediction step. The proposed method robustly tracks the object of interest by compensating for the prediction state error using the affine motion model estimated from ER. Experimental results show that the proposed method outperforms the conventional particle filter, and can track moving objects robustly in consumer handheld imaging devices.

  • PDF

Visual Tracking Using Improved Multiple Instance Learning with Co-training Framework for Moving Robot

  • Zhou, Zhiyu;Wang, Junjie;Wang, Yaming;Zhu, Zefei;Du, Jiayou;Liu, Xiangqi;Quan, Jiaxin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5496-5521
    • /
    • 2018
  • Object detection and tracking is the basic capability of mobile robots to achieve natural human-robot interaction. In this paper, an object tracking system of mobile robot is designed and validated using improved multiple instance learning algorithm. The improved multiple instance learning algorithm which prevents model drift significantly. Secondly, in order to improve the capability of classifiers, an active sample selection strategy is proposed by optimizing a bag Fisher information function instead of the bag likelihood function, which dynamically chooses most discriminative samples for classifier training. Furthermore, we integrate the co-training criterion into algorithm to update the appearance model accurately and avoid error accumulation. Finally, we evaluate our system on challenging sequences and an indoor environment in a laboratory. And the experiment results demonstrate that the proposed methods can stably and robustly track moving object.

Visual Tracking of Moving Target Using Mobile Robot with One Camera (하나의 카메라를 이용한 이동로봇의 이동물체 추적기법)

  • 한영준;한헌수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1033-1041
    • /
    • 2003
  • A new visual tracking scheme is proposed for a mobile robot that tracks a moving object in 3D space in real time. Visual tracking is to control a mobile robot to keep a moving target at the center of input image at all time. We made it possible by simplifying the relationship between the 2D image frame captured by a single camera and the 3D workspace frame. To precisely calculate the input vector (orientation and distance) of the mobile robot, the speed vector of the target is determined by eliminating the speed component caused by the camera motion from the speed vector appeared in the input image. The problem of temporary disappearance of the target form the input image is solved by selecting the searching area based on the linear prediction of target motion. The experimental results have shown that the proposed scheme can make a mobile robot successfully follow a moving target in real time.

A Mobile Object Tracking Scheme by Wired/wireless Integrated Street Lights with RFID

  • Cha, Mang Kyu;Kim, Jung Ok;Lee, Won Hee;Yu, Ki Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.25-35
    • /
    • 2016
  • Since a sophisticated location determination technology (LDT) is necessary for accurate positioning in urban area environments, numerous studies related to the LDT using the RFID (Radio Frequency IDentification) technology have been implemented for real-time positioning and data transferring. However, there are still lots of unsolved questions especially regarding what to use as base stations and what are corresponding results under the intrinsic complexity of alignment and configuration of components used for the RFID positioning. This study proposes the street light fixtures as base stations where the RFID receivers will be embedded for the mobile tracking scheme. As street light fixtures are usually installed at a certain distance interval, they can be used as base stations for the RFID receiver installation. Using the principle of the single row triangle network, the RFID receiver organization is determined based on the experiments such as recognition distance measurement and tag position accuracy estimation at inside and outside of the single row triangle network. The results verify that the mobile tracking scheme which uses RFID-embedded street light fixtures, suggested and configured in this study, is effective for the real-time outdoor positioning.