• Title/Summary/Keyword: Mobile IoT

Search Result 478, Processing Time 0.031 seconds

IoT Device Management Standard Protocol Trends in Mobile Communications (이동통신 기반 IoT 장치관리 표준 프로토콜 동향)

  • Oh, S.H.;Ko, S.K.;Son, S.C.;Lee, B.T.;Kim, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.30 no.1
    • /
    • pp.94-101
    • /
    • 2015
  • 이동통신 기반 IoT(Internet of Things) 관련 표준들은 3GPP와 ETSI를 중심으로 제정되어 왔으나 2012년부터 표준의 중복을 회피하고 단일화된 표준을 통해서 IoT 시장을 성장시키고자 oneM2M이라는 국제적 협의체가 구성되었으며, 최근 Release 1 표준을 발표하는 등 IoT 표준을 사실상 주도하고 있다. Mason과 Machina 리서치에 따르면 2020년에는 동시 연결된 M2M(Machine to Machine)/IoT 장치들의 수가 21억개에 달할 것이고, 이것들이 동시에 200억개의 통신 연결을 생성할 것이다. 이런 수많은 장치들을 관리하기 위한 표준으로 OMA(Open Mobile Alliance)에서는 LWM2M(Lightweight M2M)를 제정하였다. 또한 이런 장치들은 센서들과 같이 연산능력과 배터리에 제약이 많아서 이것을 극복할 수 있는 메시지 프로토콜로 IETF에서는 CoAP 표준을 제정하였다. oneM2M에서도 CoAP과 LWM2M 표준을 채택하였고, 이를 기반으로 한 단말과 응용서비스 관리 기능이 확대될 것으로 기대된다. 본고에서는 이동통신 기반 IoT 표준 동향과 LWM2M 기반 단말 관리 규격에 대해 살펴본다.

  • PDF

A Game Design for IoT environment (IoT 환경을 위한 게임 기획)

  • Lee, MyounJae
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.4
    • /
    • pp.133-138
    • /
    • 2015
  • The basic idea of IoT(Internet of Things) is interconnection and cooperation with a variety of things in real life such as Radio-Frequency Identification(RFID) tags, sensors, mobile phone, etc, through internet. IoT technologies which applied to these fields consist of sensor network technology and middleware, application. Currently, IoT technology is applied to various fields such as health care, home care, automotive, transportation, construction, agriculture, environment, food, and etc, based on its technologies. This paper focuses on discussion of the game planning method in IoT environment. In order to achieve this purpose, first, introduce the IoT technologies. Second, propose a game design elements and considerations in IoT environments. It can help for game developers by using IoT technologies.

Self-organization Scheme of WSNs with Mobile Sensors and Mobile Multiple Sinks for Big Data Computing

  • Shin, Ahreum;Ryoo, Intae;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.943-961
    • /
    • 2020
  • With the advent of IoT technology and Big Data computing, the importance of WSNs (Wireless Sensor Networks) has been on the rise. For energy-efficient and collection-efficient delivery of any sensed data, lots of novel wireless medium access control (MAC) protocols have been proposed and these MAC schemes are the basis of many IoT systems that leads the upcoming fourth industrial revolution. WSNs play a very important role in collecting Big Data from various IoT sensors. Also, due to the limited amount of battery driving the sensors, energy-saving MAC technologies have been recently studied. In addition, as new IoT technologies for Big Data computing emerge to meet different needs, both sensors and sinks need to be mobile. To guarantee stability of WSNs with dynamic topologies as well as frequent physical changes, the existing MAC schemes must be tuned for better adapting to the new WSN environment which includes energy-efficiency and collection-efficiency of sensors, coverage of WSNs and data collecting methods of sinks. To address these issues, in this paper, a self-organization scheme for mobile sensor networks with mobile multiple sinks has been proposed and verified to adapt both mobile sensors and multiple sinks to 3-dimensional group management MAC protocol. Performance evaluations show that the proposed scheme outperforms the previous schemes in terms of the various usage cases. Therefore, the proposed self-organization scheme might be adaptable for various computing and networking environments with big data.

Adaptive Success Rate-based Sensor Relocation for IoT Applications

  • Kim, Moonseong;Lee, Woochan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3120-3137
    • /
    • 2021
  • Small-sized IoT wireless sensing devices can be deployed with small aircraft such as drones, and the deployment of mobile IoT devices can be relocated to suit data collection with efficient relocation algorithms. However, the terrain may not be able to predict its shape. Mobile IoT devices suitable for these terrains are hopping devices that can move with jumps. So far, most hopping sensor relocation studies have made the unrealistic assumption that all hopping devices know the overall state of the entire network and each device's current state. Recent work has proposed the most realistic distributed network environment-based relocation algorithms that do not require sharing all information simultaneously. However, since the shortest path-based algorithm performs communication and movement requests with terminals, it is not suitable for an area where the distribution of obstacles is uneven. The proposed scheme applies a simple Monte Carlo method based on relay nodes selection random variables that reflect the obstacle distribution's characteristics to choose the best relay node as reinforcement learning, not specific relay nodes. Using the relay node selection random variable could significantly reduce the generation of additional messages that occur to select the shortest path. This paper's additional contribution is that the world's first distributed environment-based relocation protocol is proposed reflecting real-world physical devices' characteristics through the OMNeT++ simulator. We also reconstruct the three days-long disaster environment, and performance evaluation has been performed by applying the proposed protocol to the simulated real-world environment.

Analyses of Trend of Threat of Security in Internet of Things (사물 인터넷망에서의 보안 위협 기술 동향 분석)

  • Shin, Yoon-gu;Jung, Sungha;Do, Tahoon;Kim, Jung Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.895-896
    • /
    • 2015
  • With the development of sensor, wireless mobile communication, embedded system and cloud computing, the technologies of Internet of Things have been widely used in logistics, Smart devices security, intelligent building and o on. Bridging between wireless sensor networks with traditional communication networks or Internet, IoT gateway plays n important role in IoT applications, which facilitates the integration of wireless sensor networks and mobile communication networks or Internet, and the management and control with wireless sensor networks. The IoT Gateway is a key component in IoT application systems but It has lot of security issues. We analyzed the trends of security and privacy matters.

  • PDF

Embedded System for Mobile Phone-based Control and Monitoring (모바일 폰 기반의 제어 및 모니터링을 위한 임베디드 시스템)

  • Park, Hung-bog;Seo, Jung-hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.288-289
    • /
    • 2018
  • The use of IoT (Internet of Things) is rapidly expanding to enhance the quality of life as seen in the interconnection between mobile devices and Web. This paper proposes an embedded system that connects sensors and mobile devices via IoT technology, improving the user's ability and service experience to remotely control the home appliances with mobile-detection features. Home appliances are expected to increase labor efficiency by utilizing the embedded system connected to the sensors. Using mobile applications to control home appliances remotely and to monitor operation status advances the user's knowledge, experience, and perspectives to experience refined life qualities.

  • PDF

Lightweight Messaging for Efficient Service Discovery in Mobile IoT Environments Using Hierarchical Bloom Filters

  • Minhyeop Kim;Jung-Hyun Kwon;Hyeon-Jun Jo;In-Young Ko
    • Journal of Web Engineering
    • /
    • v.19 no.1
    • /
    • pp.29-62
    • /
    • 2020
  • In highly dynamic IoT environments, the connection statuses of IoT resources and the availability of IoT-based services change frequently. Therefore, to successfully build distributed service registries for managing and finding the information about available services in an effective manner, it is crucial to minimize the overhead of message exchanges between registries and to reduce the time overhead for identifying the capabilities of available IoT resources and the services that can be provided by utilizing these capabilities. In this paper, we propose a lightweight messaging approach that uses hierarchical Bloom filters to efficiently represent service information to be exchanged and managed by distributed service registries for IoT environments with high mobility. We also propose a method for serializing the dimensions of a Bloom-filter-encoded search space. We conducted experiments to demonstrate the improvement in the service discovery performance, the reduction in message traffic among service registries, and the decrease in the latency when synchronizing distributed service registries.

CAN interface supporting IoT application system Setup using open-source hardware and IoT platform (오픈소스 하드웨어와 IoT 플랫폼을 이용한 CAN Interface를 지원하는 차량용 IoT 응용시스템 구현)

  • Kim, Yong Hwan;Park, Su-Ho;Jeong, Jae-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.779-780
    • /
    • 2015
  • As IoT becomes a main technology of the age, many IoT products have developed and are being developed now. By using open-source hardware "Arduino"and open-source IoT platform "Temboo" to analize CAN signal from vehicle and make vehicle IoT environment to analize and use it through the mobile phone, figured out the way to develop the IoT environment with low cost. Also suggest the way to solve problems and improove.

  • PDF

Design and Implementation of Indoor Air Hazardous Substance Detection Mobile System based on IoT Platform (IoT platform 기반 실내 대기 위험 물질 감지 모바일 시스템 설계 및 구현)

  • Yang, Oh-Seok;Kim, Yeong-Uk;Lee, Hong-Lo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.6
    • /
    • pp.43-53
    • /
    • 2019
  • In recent years, there have been many cases of damage to indoor air hazardous materials, and major damage due to the lack of quick action. In this regard, the system is intended to establish for sending push messages to the user's mobile when the concentration of hazardous substances is exceeded. This system extracts data with IoT system such as Arduino and Raspberry Pi and then constructs database through MongoDB and MySQL in cloud computing system. The database is imported through the application server using NodeJS and sent to the application for visualization. Also, when receiving signals about a dangerous situation in IoT system, push message is sent using Google FCM library. Mobile application is developed using Android Web view, and page to enter Web view is developed using HTML5 (HTML, Javascript CSS). The application of this system enables real-time monitoring of indoor air-dangerous substances. In addition, real-time information on indoor/outdoor detection location and concentration can be sent to the user's mobile in case of a risk situation, which can be expected to help the user respond quickly.

Hierarchical Service Binding and Resource Allocation Design for Context-based IoT Service in MEC Networks (상황인지 기반 IoT-MEC 서비스를 위한 계층적 서비스 바인딩 및 자원관리 구조 설계)

  • Noh, Wonjong
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.598-606
    • /
    • 2021
  • In this paper, we presents a new service binding and resource management model for context based services in mobile edge computing (MEC) networks. The proposed control is composed of two layers: MEC service bindng control layer (MCL) and user context control layer (UCL). The MCL manages service binding construction, resource allocation, and service policy construction from a system point of view; and the UCL manages real-time service adaptation using meta-objects. Through simulations, we confirmed that the proposed control offers enhanced throughput and content transfer time when it is compared to the legacy computing and control models. The proposed control model can be employed as a key component for the context based various internet-of-things (IoT) services in MEC environments.