• Title/Summary/Keyword: Mobile Control

Search Result 4,006, Processing Time 0.031 seconds

Output Feedback Tracking Control of Wheeled Mobile Robots with Kinematic Disturbances (이동로봇의 기구학 외란 보상을 위한 출력 궤환 제어)

  • Chwa, Dongkyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2053-2056
    • /
    • 2016
  • In this paper, we propose an output feedback tracking control method for the wheeled mobile robots with kinematic disturbances. The kinematic disturbances should be compensated to avoid the performance degradation. Also, the unavailable velocity of the mobile robot should be estimated. These should be estimated together by designing the nonlinear observer. Based on these estimates, the output feedback controller can be designed. The stability of the mobile robot control systems using the proposed method is rigorously analyzed and the simulation results are also provided to validate the proposed method.

Intelligent Control of Mobile robot Using Fuzzy Neural Network Control Method (퍼지-신경망 제어기법을 이용한 Mobile Robot의 지능제어)

  • 정동연;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.235-240
    • /
    • 2002
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Algorithm for Autonomous Wall-Following of Wheeled Mobile Robots Using Reference Motion Synthesis and Generation of Hybrid System (하이브리드 시스템의 기준동작 구성과 생성에 의한 차륜형 이동로봇의 자율 벽면-주행 알고리즘)

  • Lim, Mee-Seub;Im, Jun-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.586-593
    • /
    • 2000
  • In this paper we propose a new approach to the autonomous wall-following of wheeled mobile robots using hybrid system reference motion synthesis and generation. The hybrid system approach is in-troduced to the motion control of nonholonomic mobile robots for the indoor navigation problems. In the dis-crete event system the discrete states are defined by the user-defined constraints and the reference mo-tion commands are specified in the abstracted motions. The hybrid control system applied for the non-holonomic mobile robots can combine the motion planning and autonomous navigation with obstacle avoid-ance for the indoor navigation problem. Simulation results show that hybrid system approach is an effective method for the autonomous navigation in indoor environments.

  • PDF

Experimental Studies of Balancing an Inverted Pendulum and Position Control of a Wheeled Drive Mobile Robot Using a Neural Network (신경회로망을 이용한 이동로봇 위의 역진자의 각도 및 로봇 위치제어에 대한 연구)

  • Kim, Sung-Su;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.10
    • /
    • pp.888-894
    • /
    • 2005
  • In this paper, experimental studies of balancing a pendulum mounted on a wheeled drive mobile robot and its position control are presented. Main PID controllers are compensated by a neural network. Neural network learning algorithm is embedded on a DSP board and neural network controls the angle of the pendulum and the position of the mobile robot along with PID controllers. Uncertainties in system dynamics are compensated by a neural network in on-line fashion. Experimental results show that the performance of balancing of the pendulum and position tracking of the mobile robot is good.

Design and Implementation of Back-stepping Control for Path Tracking of Mobile Manipulator of Logistics and Manufacturing (물류이송 및 제조용 이동형 매니퓰레이터의 경로 추적을 위한 백스테핑 제어 설계와 구현)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.301-306
    • /
    • 2021
  • In this paper, we propose a modified back-stepping control method in view of the dynamic model of mobile manipulator has the nonholonomic constraints, these constraints should be considered to design a tracking controller for the mobile manipulator. The conventional back-stepping controller includes the dynamics and kinematics of the mobile robot systems. and the modified adaptive back0stepping method is applied to constructing the controller. The proposed controller can realize the tracking trajectory of the reference path. The efficiency and robustness of this control method is demonstrated by the simulation.

NMPC-based Obstacle Avoidance and Whole-body Motion Planning for Mobile Manipulator (모바일 매니퓰레이터의 NMPC 기반 장애물 회피 및 전신 모션 플래닝)

  • Kim, Sunhong;Sathya, Ajay;Swevers, Jan;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.359-364
    • /
    • 2022
  • This study presents a nonlinear model predictive control (NMPC)-based obstacle avoidance and whole-body motion planning method for the mobile manipulators. For the whole-body motion control, the mobile manipulator with an omnidirectional mobile base was modeled as a nine degrees-of-freedom (DoFs) serial open chain with the PPR (base) plus 6R (arm) joints, and a swept sphere volume (SSV) was applied to define a convex hull for collision avoidance. The proposed receding horizon control scheme can generate a trajectory to track the end-effector pose while avoiding the self-collision and obstacle in the task space. The proposed method could be calculated using an interior-point (IP) method solver with 100[ms] sampling time and ten samples of horizon size, and the validation of the method was conducted in the environment of Pybullet simulation.

Path Control of a Mobile Robot Using Fuzzy-Neural Hybrid System (퍼지.신경회로망을 이용한 자율주행 로봇의 경로제어)

  • Lee, B.R.;Lee, W.K.;Yi, H.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.19-26
    • /
    • 1995
  • In this paper, a fuzzy-neural hybrid control approach is proposed for controlling a mobile robot that can avoid an unexpected obstacle in a navigational space. First, to describe the global structure of a known environment, a heuristic collision-free space band is introduced. Based on the band, the moving information in the known environment is trained to a neural controller. Then, during the execution of a mobile robot navigation moving information at each position is given the neural controller. If the mobile robot encounters an unexpected obstacle, a fuzzy controller activates to avoid the unexpected obstacle. Finally, some numerical examples are presented to demonstrate the control algorithm.

  • PDF

Real time control of a mobile robot considering dynamics (3축 이동로보트의 동역할을 고려한 실시간 제어)

  • Cha, Y.Y.;Gweon, D.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.190-199
    • /
    • 1993
  • In this study a three-axes mobile robot which has two independently controlled driving wheels and a function of simultaneously steering the driving wheels has been developed. Two-motion modes of the mobile robot, the first is a differential velocity motion of two driving wheels and the second is a equal driving and steering motion, have been analyzed and the kinematic and dymanic analyses about the each motion mode have been carried out. As a result of dynamic analysis, the torque used on a motor control and acceleration have been derived explicitly. Hence, a computation time is saved effectively and a real time control of the mobile robot considering the dynamics has become possible. Through a simulation the results considering the dynamics have been compared with that no regarding the dynamics and the possibility of real-time control has been proved.

  • PDF

Development of a Simulator for a Mobile Robot Based on iPhone (아이폰 기반의 이동로봇 시뮬레이터 개발)

  • Kim, Dong Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • This study presents the remote control of a mobile robot using iPhone based on ad hoc communication. Two control interfaces are proposed to control a mobile robot using iPhone : Remote control by a user and autonomous control. To evaluate the effectiveness of algorithms for trajectory following, a simulator are developed where a virtual robot follows a referenced trajectory in a monitor by iPhone interface. In the proposed simulator, some algorithms are tested how they work well or not for trajectory following of a mobile robot. Comparative results by remote user control and autonomous control are shown. Results of an experiment show that the proposed simulator can be effectively used for testing the effectiveness of autonomous tracking algorithms.

Formation of Mobile Robots with Inaccurate Sensor Information

  • Kim, Gunhee;Lee, Doo-Yong;Lee, Kyungno
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.203-209
    • /
    • 2001
  • This paper develops a control method for some generic formation tasks of multiple mobile robots with inaccurate sensor information. Inaccurate sensor information means that all the robots have only local sensors that cannot accurately measure absolute distances and directions of objects. That is, all the sensors have limitation on the range, and uncertainty in the values. Therefore, more robust and reliable control logic is proposed and implemented. The logic is developed considering generic situations and increasing the number of robots participating in the formation. Petri nets are used for modeling and design of the control logic, which can visualize the control models and make it easy to check the states of each robot. Physically homogeneous mobile robots are designed and built to evaluate the developed logic. Each robot is equipped with eighteen infrared sensors and a UHF transceiver module. The experiment results are analyzed quantitatively by using the data of the relative distances and angles between the robots. And the trajectories of the robots during the formation are also evaluated. The developed control approach is demonstrated with experiments to be successful and efficient for the formation of autonomous mobile robots.

  • PDF