• Title/Summary/Keyword: Mobile Computing

Search Result 1,896, Processing Time 0.031 seconds

Study on the Job Execution Time of Mobile Cloud Computing (모바일 클라우드 컴퓨팅의 작업 실행 시간에 대한 연구)

  • Jung, Sung Min;Kim, Tae Kyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.99-105
    • /
    • 2012
  • Given the numbers of smartphones, tablets and other mobile devices shipped every day, more and more users are relying on the cloud as the main driver for satisfying their computing needs, whether it is data storage, applications or infrastructure. Mobile cloud computing is simply cloud computing in which at least some of the devices involved are mobile. Each node is owned by a different user and is likely to be mobile. Using mobile hardware for cloud computing has advantages over using traditional hardware. These advantage include computational access to multimedia and sensor data without the need for large network transfer, more efficient access to data stored on other mobile devices and distributed ownership and maintenance of hardware. It is important to predict job execution time in mobile cloud computing because there are many mobile nodes with different capabilities. This paper analyzes the job execution time for mobile cloud computing in terms of network environment and heterogeneous mobile nodes using a mathematical model.

Construction of a Virtual Mobile Edge Computing Testbed Environment Using the EdgeCloudSim (EdgeCloudSim을 이용한 가상 이동 엣지 컴퓨팅 테스트베드 환경 개발)

  • Lim, Huhnkuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1102-1108
    • /
    • 2020
  • Mobile edge computing is a technology that can prepare for a new era of cloud computing and compensate for shortcomings by processing data near the edge of the network where data is generated rather than centralized data processing. It is possible to realize a low-latency/high-speed computing service by locating computing power to the edge and analyzing data, rather than in a data center far from computing and processing data. In this article, we develop a virtual mobile edge computing testbed environment where the cloud and edge nodes divide computing tasks from mobile terminals using the EdgeCloudSim simulator. Performance of offloading techniques for distribution of computing tasks from mobile terminals between the central cloud and mobile edge computing nodes is evaluated and analyzed under the virtual mobile edge computing environment. By providing a virtual mobile edge computing environment and offloading capabilities, we intend to provide prior knowledge to industry engineers for building mobile edge computing nodes that collaborate with the cloud.

Task Scheduling on Cloudlet in Mobile Cloud Computing with Load Balancing

  • Poonam;Suman Sangwan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.73-80
    • /
    • 2023
  • The recent growth in the use of mobile devices has contributed to increased computing and storage requirements. Cloud computing has been used over the past decade to cater to computational and storage needs over the internet. However, the use of various mobile applications like Augmented Reality (AR), M2M Communications, V2X Communications, and the Internet of Things (IoT) led to the emergence of mobile cloud computing (MCC). All data from mobile devices is offloaded and computed on the cloud, removing all limitations incorporated with mobile devices. However, delays induced by the location of data centers led to the birth of edge computing technologies. In this paper, we discuss one of the edge computing technologies, i.e., cloudlet. Cloudlet brings the cloud close to the end-user leading to reduced delay and response time. An algorithm is proposed for scheduling tasks on cloudlet by considering VM's load. Simulation results indicate that the proposed algorithm provides 12% and 29% improvement over EMACS and QRR while balancing the load.

Intergrating Security Model for Mobile-Grid (Mobile-Grid 환경에서의 통합 보안 모델)

  • Kang, Su-Youen;Lee, Sung-Young
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.585-588
    • /
    • 2002
  • Grid provides integral ing system that enables to use distributed computing resource and services as adapts traditional infrastructures to overcome the distributed computing environments. But, computing today is moving away from a restriction of the desktop, becoming diffused into our surrounding and onto our personal digital devices. In such mobile computing environments, users expects to access resource and services at any time from anywhere in such Mobile-Grid computing. This expectation results security issues, since the computing environments is expanded. This paper describes the security challenges in Mobile-Grid computing, explaining why traditional security mechanism fail to meet the demands of these environments. This paper describes policy driven security mechanism enabled entity to use service and data in trust Mobile-Grid environments and a set of security service module that need to be realized in the Mobile-Grid security architecture presents a set of use pattern that show hew these modules can be used for billing service in a secure Mobile-Grid environments.

  • PDF

Dynamic Scheduling Method for Cooperative Resource Sharing in Mobile Cloud Computing Environments

  • Kwon, Kyunglag;Park, Hansaem;Jung, Sungwoo;Lee, Jeungmin;Chung, In-Jeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.484-503
    • /
    • 2016
  • Mobile cloud computing has recently become a new paradigm for the utilization of a variety of shared mobile resources via wireless network environments. However, due to the inherent characteristics of mobile devices, a limited battery life, and a network access requirement, it is necessary for mobile servers to provide a dynamic approach for managing mobile resources efficiently in mobile cloud computing environments. Since on-demand job requests occur frequently and the number of mobile devices is drastically increased in mobile cloud computing environments, a different mobile resource management method is required to maximize the computational power. In this paper, we therefore propose a cooperative, mobile resource sharing method that considers both the inherent properties and the number of mobile devices in mobile cloud environments. The proposed method is composed of four main components: mobile resource monitor, job handler, resource handler, and results consolidator. In contrast with conventional mobile cloud computing, each mobile device under the proposed method can be either a service consumer or a service provider in the cloud. Even though each device is resource-poor when a job is processed independently, the computational power is dramatically increased under the proposed method, as the devices cooperate simultaneously for a job. Therefore, the mobile computing power throughput is dynamically increased, while the computation time for a given job is reduced. We conduct case-based experiments to validate the proposed method, whereby the feasibility of the method for the purpose of cooperative computation is shown.

Design and Prototyping of Partial Connection Manager for Mobile Computing Service (이동 컴퓨팅 서비스를 위한 부분 연결 관리자의 설계 및 프로토타입핑)

  • Kim, Pyeong-Jung;Yun, Seok-Hwan;Jin, Seong-Il
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.6
    • /
    • pp.1932-1940
    • /
    • 2000
  • We must solve problems caused by mobile computing environments for supporting efficient mobile computing services. The problem is the use of wireless medium having high error rates and low bandwidth, and the sudden network disconnection to reduce the power consumption of a mobile host and the cost of the network connection. For these problems, we proposed the architecture of the partial connection manager and designed and implemented that in this paper. In particular, The partial connection manager creates the limited number of mobile agents according to priority and sends them in parallel to server systems and combines results of them process rapidly the user request. By applying the proposed partial connection manager to the mobile computing services called cybermarket, we knew that the mobile agent technique could be suited to the mobile computing environment and overcome the partial connection problem caused by eh mobile computing environment.

  • PDF

Design and Implementation of a Mobile Runtime Library for Execution of Large-scale Application (대용량 소프트웨어 실행을 위한 모바일 런타임 라이브러리 설계 및 구현)

  • Lee, Ye-In;Lee, Jong-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Today's growth of the mobile communication infrastructure made mobile computing systems like cellular phones came next to or surpassed the desktop PCs in popularity due to their mobility. Although the performance of mobile devices is now being improved continuously, it is a current common sense that compute intensive large-scale applications can hardly run on any kind of mobile handset devices. To clear up this problem, we decided to exploit the mobile cluster computing system and surveyed the existing ones first. We found out, however, that most of them are not the actual implementations but a mobile cluster infrastructure proposal or idea suggestions for reliable mobile clustering. To make cell phones participated in cluster computing nodes, in this paper, we propose a redesigned JPVM cluster computing engine and a set of WIPI mobile runtime functions interfacing with it. And we also show the performance evaluation results of real parallel applications running on our Mobile-JPVM cluster computing systems. We find out by the performance evaluation that large-scale applications can sufficiently run on mobile devices such as cellular phones when using our mobile cluster computing engine.

THE USE OF MOBILE COMPUTERS FOR CONSTRUCTION PROJECTS

  • Chul S. Kim
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.956-961
    • /
    • 2009
  • When construction engineers perform their work in the jobsite, they have to record as-built conditions in the project log (Data Collection). On the other hand, the engineers often have to refer to the construction documents when necessary at the job faces (Data Access). The practice of Data Collection and Data Access in the jobsite can be greatly enhanced by utilizing mobile computing with wireless communications. In this paper, two cases of mobile computing applications for construction field management are presented; Mobile Specifications System and Mobile Data Collection System. The demonstration of the process for developing two mobile applications is the primary purpose of the paper. The problems and issues involved with adopting mobile computing for construction field are also presented. The simple information framework for mobile computing has been also proposed as an outcome of the research. As for development tools, readily available relational database and wireless network have been used. The use of commercial mobile broadband was examined for data communication where local area network is not available.

  • PDF

The Impact of Ubiquitous Factors on Intention to Use Mobile Services (유비쿼터스 특성요인이 모바일 서비스의 사용의도에 미치는 영향)

  • Cha, Yoon-Sook;Chung, Moon-Sang
    • The Journal of Information Systems
    • /
    • v.16 no.2
    • /
    • pp.69-91
    • /
    • 2007
  • The mobile computing environment has already matured and mobile services are activated throughout many industries. In the following years, these changes are expected to evolve into a ubiquitous computing environment. In the meantime, whether newly developed information technologies will thrive or diminished depends on user's intention to adopt them. Hence, the necessity of user-centered research considering ubiquitous computing in mobile computing environment is obvious. This study, thus, investigated ubiquitous factors in various literature related to ubiquitous computing and technology acceptance and it proposes a research model of the ubiquitous factors affecting user's intention to use mobile services, in terms of meaning(connectivity, mobility), service(contextual offer), compatibility(compatibility), and infrastructure(privacy, truth). The proposed model is expected to help both researchers and practitioners extend their understanding about the ubiquitous factors in mobile computing environment

  • PDF

A Comparative Study For Mobile Cloud Computing Environment (모바일 클라우드 컴퓨팅 환경의 비교 연구)

  • Jang, Rae-Young;Jung, Sung-Jae;Bae, Yu-Mi;Sung, Kyung;Soh, Woo-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.277-280
    • /
    • 2011
  • After the concept of Cloud Computing was first introduced, IT industry had focused on it. The Cloud Computing market is increasing as many major coporations have been participating in it. Now, the possibility of Mobile Cloud Computing has rising. Needless to say, the growth of Mobile Cloud Computing is explosive. Mobile industry changes its operational system from FeaturePhone to SmartPhone which are based on iPhone or Android. The number of Smart phone users in Korea exceeds 10 millions. Through this study, we will examine sorts and acctual situations of available domestic and international Mobile Cloud Computing Services in SmartPhone. Also, we will investigate the problems of current Mobile Cloud Computing and present the solutions.

  • PDF