• Title/Summary/Keyword: Mobile Authentication

Search Result 773, Processing Time 0.028 seconds

An improved Multi-server Authentication Scheme for Distributed Mobile Cloud Computing Services

  • Irshad, Azeem;Sher, Muhammad;Ahmad, Hafiz Farooq;Alzahrani, Bander A.;Chaudhry, Shehzad Ashraf;Kumar, Rahul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5529-5552
    • /
    • 2016
  • Mobile cloud computing (MCC) has revolutionized the way in which the services can be obtained from the cloud service providers. Manifold increase in the number of mobile devices and subscribers in MCC has further enhanced the need of an efficient and robust authentication solution. Earlier, the subscribers could get cloud-computing services from the cloud service providers only after having consulted the trusted third party. Recently, Tsai and Lo has proposed a multi-server authenticated key agreement solution for MCC based on bilinear pairing, to eliminate the trusted third party for mutual authentication. The scheme has been novel as far as the minimization of trusted party involvement in authenticating the user and service provider, is concerned. However, the Tsai and Lo scheme has been found vulnerable to server spoofing attack (misrepresentation attack), de-synchronization attack and denial-of-service attack, which renders the scheme unsuitable for practical deployment in different wireless mobile access networks. Therefore, we have proposed an improved model based on bilinear pairing, countering the identified threats posed to Tsai and Lo scheme. Besides, the proposed work also demonstrates performance evaluation and formal security analysis.

Biometric User Authentication Method of Mobile Application in Trustable Space (신뢰할 수 있는 공간에서 생체인식기반의 모바일 애플리케이션 사용자인증 기법)

  • Lee, Tae Kyong;Kim, Yong Hyuk;Im, Eul Gyu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.2
    • /
    • pp.201-212
    • /
    • 2017
  • As services using mobile devices increase, exposure of personal information, and secure threats increase. In this paper, we propose a location-based user authentication system used in mobile device for tightening security. Our authentication system is performed to authenticate two steps. The first authentication is location authentication to ensure that the user accesses an application in trustable space. This authentication method uses an Access Point's information. The second authentication is trustable space authentication to confirm the normal user. This method is carried out the authentication by using biometric information from the user.

Improved AKA Protocol for Efficient Management of Authentication Data in 3GPP Network (3GPP 네트워크에서 효율적인 인증 데이터 관리를 위한 개선된 AKA 프로토콜)

  • Kim, Doo-Hwan;Jung, Sou-Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.2
    • /
    • pp.93-103
    • /
    • 2009
  • In this paper, we propose a USIM-based Authentication Scheme for 3GPP Network Access. The proposed scheme improves the problems of existing authentication protocol in 3GPP Network such as sequence number synchronization problem, the storage overhead of authentication data, and bandwidth consumption between Serving Network and Home Network. Our proposal is based on the USIM-based Authentication and Key Agreement Protocol that is defined in 3GPP Specification. In our scheme, mobile nodes share a SK with Serving Network and use a time stamp when mobile nodes are performing an authentication procedure with Serving Network. By using time stamp, there is no reason for using sequence number to match the authentication vector between mobile nodes and networks. So, synchronization problem can be solved in our scheme. As well as our scheme uses an authentication vector, the storage overhead of authentication data in Serving Network and bandwidth consumption between networks can be improved.

Robust ID based mutual authentication and key agreement scheme preserving user anonymity in mobile networks

  • Lu, Yanrong;Li, Lixiang;Peng, Haipeng;Yang, Yixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1273-1288
    • /
    • 2016
  • With the swift growth of wireless technologies, an increasing number of users rely on the mobile services which can exchange information in mobile networks. Security is of key issue when a user tries to access those services in this network environment. Many authentication schemes have been presented with the purpose of authenticating entities and wishing to communicate securely. Recently, Chou et al. and Farash-Attari presented two ID authentication schemes. They both claimed that their scheme could withstand various attacks. However, we find that the two authentication schemes are vulnerable to trace attack while having a problem of clock synchronization. Additionally, we show that Farash-Attari's scheme is still susceptible to key-compromise impersonation attack. Therefore, we present an enhanced scheme to remedy the security weaknesses which are troubled in these schemes. We also demonstrate the completeness of the enhanced scheme through the Burrow-Abadi-Needham (BAN) logic. Security analysis shows that our scheme prevents the drawbacks found in the two authentication schemes while supporting better secure attributes. In addition, our scheme owns low computation overheads compared with other related schemes. As a result, our enhanced scheme seems to be more practical and suitable for resource-constrained mobile devices in mobile networks.

Mobile Code Authentication Schemes that Permit Overlapping of Execution and Downloading (다운로드와 수행의 병행을 허용하는 모바일 코드 인증 기법)

  • Park Yongsu;Cho Yookun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.3
    • /
    • pp.115-124
    • /
    • 2005
  • When the application code is downloaded into the mobile device, it is important to provide authentication. Usually, mobile code execution is overlapped with downloading to reduce transfer delay. To the best of our knowledge, there has not been any algorithm to authenticate the mobile code in this environment. In this paper, we present two efficient code authentication schemes that permit overlapping of execution and downloading under the two cases: the first is when the order of transmission of code chunks is determined before the transmission and the second is when this order is determined during the transmission. The proposed methods are based on hash chaining and authentication trees, respectively. Especially, the latter scheme utilizes previously received authentication informations to verify the currently received chunk, which reduces both communication overhead and verification delay. When the application code consists of n chunks, communication overheads of the both schemes are 0(n) and verification delays of these two schemes are O(1) and O(log n), respectively.

Performance Comparison between Random CA Group Authentication and Home CA Authentication in Mobile Ad hoc Network (모바일 애드혹 네트워크에서 임의의 CA 그룹을 이용한 이동노드의 인증과 홈 CA를 이용한 인증방법의 성능 비교)

  • Lee, Yong;Lee, Goo-Yeon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.10
    • /
    • pp.40-48
    • /
    • 2008
  • Security of self organized mobile ad hoc networks is an important issue because administration information in the networks is managed by the constituent nodes. Especially authentication mechanism is necessary for trust setup between newly joining nodes and the network. The authentication models and protocols which are based on the wireline infrastructure could not be practical for mobile ad hoc network. Although public key algorithm-based method is widely used for authentication, it is not easy to be applied to mobile ad hoc networks because they do not have infrastructure such as centralized CA which is needed for certificate verification. In this paper, we consider the public key based random CA group method proposed in [1] to provide efficient authentication scheme to mobile ad hoc networks and analyze the performance of the method, which is then compared to the home CA method. From the analysis results, we see that the random CA method where the function of CA is distributed to some mobile nodes and the authentication information is propagated to randomly chosen CAs shows higher reliability and lower cost than home CA method.

Hybrid Authentication Scheme for Mobile Multi-hop Relay in IEEE 802.16j (IEEE 802.16j기반의 모바일 멀티 홉 릴레이에서의 혼합형 인증 기법에 대한 연구)

  • Lee, Yong;Lee, Goo-Yeon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.10
    • /
    • pp.127-136
    • /
    • 2007
  • It is easy to install and maintain a mobile multi-hop wireless network due to its self-organizing characteristics. However it has security weakness of the authentication of mobile multi-hop relay stations. Specially, the mobile multi-hop relay network in the IEEE 802.16j has the additional security weakness caused by the requirement of backward compatibility for mobile stations of the conventional IEEE 802.16 system. In this paper, we propose a novel mutual authentication scheme applicable to IEEE 802.16j-based mobile multi-hop relay network architecture. The scheme is able to resolve the initial trust gain problem of a multi-hop node at its entry to the network, the problem of rogue mobile multi-hop node and the problem of hop-by-hop authentication between multi-hop nodes. Effectively, the scheme is a hybrid scheme of the distributed authentication method and the centralized authentication method which have been considered to be deployed in the wireless ad-hoc network and the wireless network connected to wired authentication servers, respectively. Also, we analyze the effectiveness of the proposed hybrid authentication method.

A Study on User Authentication Method for Foldable Screen-Based Devices (폴더블 스크린 기반 기기 사용자 인증기법 연구)

  • Choi, Dongmin
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.440-447
    • /
    • 2021
  • Smartphones are currently being produced with similar functions, shapes, and software. The foldable smartphone is a product that dramatically changed the shape of the existing smartphone. Therefore, it affects the functions and software. In this paper, we analyze the potential security vulnerability of current mobile authentication methods by dividing them into two parts, security vulnerabilities of non-foldable smartphones, and security vulnerability that appears with the changed smartphone structure. According to the analysis result, the classic and current mobile user authentication methods appears to be easily affected by the smartphone display structure. Finally, we propose an appropriate authentication method as well as the concept of security measures for smartphones with foldable screen. Our method shows that it is more secure than the conventional authentication methods in foldable display smartphone.

Secure Password-based Authentication Method for Mobile Banking Services

  • Choi, Dongmin;Tak, Dongkil;Chung, Ilyong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.1
    • /
    • pp.41-50
    • /
    • 2016
  • Moblie device based financial services are vulnerable to social engineering attacks because of the display screen of mobile devices. In other words, in the case of shoulder surfing, attackers can easily look over a user's shoulder and expose his/her password. To resolve this problem, a colour-based secure keyboard solution has been proposed. However, it is inconvenient for genuine users to verify their password using this method. Furthermore, password colours can be exposed because of fixed keyboard colours. Therefore, we propose a secure mobile authentication method to provide advanced functionality and strong privacy. Our authentication method is robust to social engineering attacks, especially keylogger and shoulder surfing attacks. According to the evaluation results, our method offers increased security and improved usability compared with existing methods.

An Efficient Medical Information Authentication Scheme in Mobile Cloud Environment (모바일 클라우드 환경에서 효율적인 의료정보 인증 기법)

  • You, Mi-kyeong;Woo, Sung-hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.721-723
    • /
    • 2015
  • Recently importance and scalability of cloud computing technology is rapidly emerging, it tends to have applied to various information systems. Many services have been made in mobile cloud environment, and medical information service quick application is required. When the medical information is important information of individuals to leakage, because you can cause serious problems, the problem of secure authentication procedures must be resolved. Therefore, in this paper, we propose an authentication scheme that can be more efficiently manage the medical information system in a mobile cloud environment.

  • PDF