• Title/Summary/Keyword: Mobile Anchor

Search Result 145, Processing Time 0.031 seconds

Leveraging Proxy Mobile IPv6 with SDN

  • Raza, Syed M.;Kim, Dongsoo S.;Shin, DongRyeol;Choo, Hyunseung
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.460-475
    • /
    • 2016
  • The existing Proxy Mobile IPv6 suffers from a long handover latency which in turn causes significant packet loss that is unacceptable for seamless realtime services such as multimedia streaming. This paper proposes an OpenFlow-enabled proxy mobile IPv6 (OF-PMIPv6) in which the control of access gateways is centralized at an OpenFlow controller of a foreign network. The proposed OF-PMIPv6 separates the control path from the data path by performing the mobility control at the controller, whereas the data path remains direct between a mobile access gateway and a local mobility anchor in an IP tunnel form. A group of simple OpenFlow-enabled access gateways performs link-layer control and monitoring activities to support a comprehensive mobility of mobile nodes, and communicates with the controller through the standard OpenFlow protocol. The controller performs network-layer mobility control on behalf of mobile access gateways and communicates with the local mobility anchor in the Proxy Mobile IPv6 domain. Benefiting from the centralized view and information, the controller caches the authentication and configuration information and reuses it to significantly reduce the handover latency. An analytical analysis of the proposed OF-PMIPv6 reactive and proactive handover schemes shows 43% and 121% reduction in the handover latency, respectively, for highly utilized network. The results gathered from the OF-PMIPv6 testbed suggest similar performance improvements.

Intelligent Hierarchical Mobility Support Scheme in F-PMIPv6 Networks (F-PMIPv6 네트워크에서 지능적인 계층적 이동성 지원 기법)

  • Han, Sunghee;Jeong, Jongpil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.337-349
    • /
    • 2013
  • In this paper, we propose a new mobility management scheme, called i-FP(intelligent Fast PMIPv6). Our proposed i-FP scheme is addressed for solving the existing local mobility management problems from legacy frameworks. To move MN(Mobile Node) to other networks in one domain, i-FP employs three network entities which are extended from PMIPv6(Proxy Mobile IPv6), LMA(Local Mobility Anchor), MAG(Mobile Access Gateway) and MN. In i-FP, the three network entities can reduce the handover delay time of MNs. Also, i-FP uses an IP header swapping mechanism to avoid the traffic overhead and improve the throughput of network. To evaluate the performance of i-FP, we analyze our i-FP, HMIPv6(Hierarchical Mobile IPv6) and PMIPv6 which are legacy protocols of local mobility management in terms of various parameters. Finally, our i-FP scheme shows good performance(reduction of routing hops 10.2%, signaling costs 58.5% and handover delay 16.3%) than other network schemes for the total cost.

Adaptive Route Optimization for Proxy Mobile IPv6 Networks (Proxy Mobile Ipv6 네트워크에서의 적응적 경로 최적화)

  • Kim, Min-Gi;Lee, Su-Kyoung
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.204-211
    • /
    • 2009
  • Proxy Mobile IPv6(PMIPv6) is that network-based mobility management protocol that network supports mobile node's mobility on behalf of the Mobile Node(MN). In PMIPv6 network, data packets from a Correspondent Node(CN) to a MN will always traverse the MN's Local Mobility Anchor(LMA). Even though, CN and MN might be located close to each other or within the same PMIPv6 domain. To solve this problem, several PMIPv6 Route Optimization(RO) schemes have been proposed. However, these RO schemes may result in a high signaling cost when MN moves frequently between MAGs. For this reason, we propose an adaptive route optimization(ARO) scheme. We analyze the performance of the ARO. Analytical results indicate that the ARO outperforms previous schemes in terms of signaling overhead.

The switching algorithm of MAP load balacing on HMIPv6 (HMIPv6(Hierachical Mobile IPv6 Mobility Management)상에서의 MAP과 이동노드(Mobile Node)의 Load-Balancing 을 위한 스위칭(Switching) 알고리즘 연구)

  • Sung, Ki-Hyuk;Yoo, Byung-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.209-210
    • /
    • 2006
  • Hierachical Mobile IPv6 (HMIPv6) solves Micro-mobility protocol problem about Handover. Mobility Anchor Point(MAP) helps reducing the handover, but this makes a load on the MAP. Besides the MAP operates this work everytime, and every Nodes. In this paper, we propose the algorithm that reduces the amount of Map working.

  • PDF

Paging Extensions for Hierarchical Mobile IPv6 (계층적 Mobile IPv6에서의 페이징 지원 방안)

  • 박기현;조유제
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04d
    • /
    • pp.509-511
    • /
    • 2003
  • 최근 이동 통신 환경에서의 인터넷 서비스의 요구가 늘어남에 따라 IP의 이동성 지원에 대한 연구가 활발히 진행되어 왔다. 본 논문은 IP 이동성 지원을 위한 프로토콜 중 IETF(Internet Engineering Task Forces)에서 현재 표준화가 진행중인 HMIPv6(Hierarchical Mobile IPv6 Mobility Management)[4]가 가지는 부하 분산 문제를 수평적인 MAP(Mobility Anchor Point) 구조를 통해 해결하고, 이 구조에서의 페이징 지원 방안을 제안하였다.

  • PDF

Localization Estimation Using Artificial Intelligence Technique in Wireless Sensor Networks (WSN기반의 인공지능기술을 이용한 위치 추정기술)

  • Kumar, Shiu;Jeon, Seong Min;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.9
    • /
    • pp.820-827
    • /
    • 2014
  • One of the basic problems in Wireless Sensor Networks (WSNs) is the localization of the sensor nodes based on the known location of numerous anchor nodes. WSNs generally consist of a large number of sensor nodes and recording the location of each sensor nodes becomes a difficult task. On the other hand, based on the application environment, the nodes may be subject to mobility and their location changes with time. Therefore, a scheme that will autonomously estimate or calculate the position of the sensor nodes is desirable. This paper presents an intelligent localization scheme, which is an artificial neural network (ANN) based localization scheme used to estimate the position of the unknown nodes. In the proposed method, three anchors nodes are used. The mobile or deployed sensor nodes request a beacon from the anchor nodes and utilizes the received signal strength indicator (RSSI) of the beacons received. The RSSI values vary depending on the distance between the mobile and the anchor nodes. The three RSSI values are used as the input to the ANN in order to estimate the location of the sensor nodes. A feed-forward artificial neural network with back propagation method for training has been employed. An average Euclidian distance error of 0.70 m has been achieved using a ANN having 3 inputs, two hidden layers, and two outputs (x and y coordinates of the position).

Robust Inter-MAP Binding Update Scheme in HMIPv6 (HMIPv6 네트워크에서 Robust 한 Inter-MAP 바인딩 업데이트 기법)

  • Jinwook Park;Jongpil Jeong;Hyunseung Choo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.1387-1390
    • /
    • 2008
  • In a wireless network, handover latency is very important in supporting user mobility with the required quality of service (QoS). In view of this many schemes have been developed which aim to reduce the handover latency. The Hierarchical Mobile IPv6 (HMIPv6) approach is one such scheme which reduces the high handover latency that arises when mobile nodes perform frequent handover in Mobile IPv6 wireless networks. Although HMIPv6 reduces handoff latency, failures in the mobility anchor point (MAP) results in severe disruption or total disconnection that can seriously affect user satisfaction in ongoing sessions between the mobile and its correspondent nodes. HMIPv6 can avoid this situation by using more than one mobility anchor point for each link. In [3], an improved Robust Hierarchical Mobile IPv6 (RH-MIPv6) scheme is presented which enhances the HMIPv6 method by providing a fault-tolerant mobile service using two different MAPs (Primary and Secondary). It has been shown that the RH-MIPv6 scheme can achieve approximately 60% faster recovery times compared with the standard HMIPv6 approach. However, if mobile nodes perform frequent handover in RH-MIPv6, these changes incur a high communication overhead which is configured by two local binding update units (LBUs) as to two MAPs. To reduce this communication overhead, a new cost-reduced binding update scheme is proposed here, which reduces the communication overhead compared to previous schemes, by using an increased number of MAP switches. Using this new proposed method, it is shown that there is a 19.6% performance improvement in terms of the total handover latency.

Improved Hierarchical Prefix Delegation Protocol for route optimization in nested NEMO (중첩된 NEMO에서의 경로 최적화를 위한 개선된 계층적 프리픽스 할당 프로토콜)

  • Rho Toung-Taeg
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.227-236
    • /
    • 2005
  • Hierarchical Prefix Delegation (HPD) protocol refers to a type of solution to problems inherent in non-optimal routing which occurs with Network Mobility (NEMO) basic solution. However, because HPD cannot improve the micro-mobility Problems, Problem surfaces each time Mobile Network Node (MNN) changes the attachment point; as happens also in a Mobile IPv6 (MIPv6) protocol in sen야ng Binding Update (BU) messages to Home Agent (HA) / Correspondent Nodes(CNs) By applying Hierarchical Mobile IPv6 protocol concept to HPD, this study Proposes an algorithm for effectively handling micro-mobility problems which occur with HPD in a nested NEMO environment. By sending BU only to nearby Mobility Anchor Point(MAP) during MNN location change within a MAP's domain, the proposed protocol will alleviate service disruption delays and signaling loads during the handover process, overcoming the limitations of HPD.

  • PDF

Improved Hierarchical Prefix Delegation Protocol for route optimization in nested NEMO (중첩된 NEMO에서의 경로 최적화를 위한 개선된 계층적 프리픽스 할당 프로토콜)

  • Rho, Kyung-Taeg
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.147-155
    • /
    • 2006
  • Hierarchical Prefix Delegation (HPD) protocol refers to a type of solution to problems inherent in non-optimal routing which occurs with Network Mobility (NEMO) basic solution. However, because HPD cannot improve the micro-mobility problems, problem surfaces each time Mobile Network Node (MNN) changes the attachment point; as happens also in a Mobile IPv6 (MIPv6) protocol in sending Binding Update (BU) messages to Home Agent (HA) / Correspondent Nodes(CNs). By applying Hierarchical Mobile IPv6 protocol concept to HPD, this study proposes an algorithm for effectively handling micro-mobility problems which occur with HPD in a nested NEMO environment. By sending BU only to nearby Mobility Anchor Point(MAP) during MNN location change within a MAP's domain, the proposed protocol will alleviate service disruption delays and signaling loads during the handover process, overcoming the limitations of HPD.

  • PDF

Route Optimization Using Correspondent Information on Proxy Mobile IPv6 (Proxy Mobile IPv6에서 Correspondent Information을 이용한 Route Optimization 기법)

  • Choi, Young-Hyun;Lee, Jong-Hyouk;Chung, Tai-Myoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.1218-1221
    • /
    • 2009
  • 최근 Internet Engineering Task Force에서 표준화가 된 Proxy Mobile IPv6는 기존의 이동성 보장 프로토콜인 Mobile IPv6가 가지는 많은 문제점을 보완했다. 하지만, Proxy Mobile IPv6에서 같은 Local Mobility Anchor 내에 있고, 다른 Mobile Access Gateway에 있는 Mobile Node 사이의 패킷 전송에 있어서 발생하는 삼각 라우팅 문제는 여전히 존재한다. 이 문제점을 해결하기 위해 최근 Liebsch의 드래프트와 A.Dutta의 드래프트에서 제안된 두 가지의 Route Optimization 기법의 동작 과정을 알아보고, 상호 데이터 전송 상황에서 더 나은 성능을 제공하는 새로운 Route Optimization 기법을 제안한다. 제안한 Route Optimization 기법은 Corresponding Information을 이용하여 Mobile Access Gateway 간 Corresponding Binding을 완료하여, Route Optimization을 설정한다. 제안한 Correspondent Information을 이용한 Route Optimization 기법은 기존의 기법보다 상호 데이터 전송 상황에서 Route Optimization에 필요한 메시지 수가 적기 때문에 시그널링 비용이 감소하였다.