• Title/Summary/Keyword: Mobbing Value

Search Result 3, Processing Time 0.02 seconds

Mobbing-Value Algorithm based on User Profile in Online Social Network (온라인 소셜 네트워크에서 사용자 프로파일 기반의 모빙지수(Mobbing-Value) 알고리즘)

  • Kim, Guk-Jin;Park, Gun-Woo;Lee, Sang-Hoon
    • The KIPS Transactions:PartD
    • /
    • v.16D no.6
    • /
    • pp.851-858
    • /
    • 2009
  • Mobbing is not restricted to problem of young people but the bigger recent problem occurs in workspaces. According to reports of ILO and domestic case mobbing in the workplace is increasing more and more numerically from 9.1%('03) to 30.7%('08). These mobbing brings personal and social losses. The proposed algorithm makes it possible to grasp not only current mobbing victims but also potential mobbing victims through user profile and contribute to efficient personnel management. This paper extracts user profile related to mobbing, in a way of selecting seven factors and fifty attributes that are related to this matter. Next, expressing extracting factors as '1' if they are related me or not '0'. And apply similarity function to attributes summation included in factors to calculate similarity between the users. Third, calculate optimizing weight choosing factors included attributes by applying neural network algorithm of SPSS Clementine and through this summation Mobbing-Value(MV) can be calculated . Finally by mapping MV of online social network users to G2 mobbing propensity classification model(4 Groups; Ideal Group of the online social network, Bullies, Aggressive victims, Victims) which is designed in this paper, can grasp mobbing propensity of users, which will contribute to efficient personnel management.

Mobbing Value Algorithm for Improvement Victims Management - based on Social Network in Military - (집단 따돌림 희생자 관리 개선을 위한 모빙 지수 알고리즘 - 소셜 네트워크 기반 군 조직을 중심으로 -)

  • Kim, Guk-Jin;Park, Gun-Woo;Lee, Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.1-12
    • /
    • 2009
  • Mobbing is going the rounds through a society rapidly and Military is not exception. Because mobbing of military is expressed not only psychology exclusion that is mobbing pattern of adult society but also sometimes psychologic and physical mobbing, is possible to join serious military discipline like a suicide and outrageous behavior. Specially military try to protect occurrence of victims that is public service through various rules and management plan but victims is going on happen. It means importance of grasp not only current mobbing victims but also potential mobbing victims better than preparation of various rules and management plans. Therefore this paper extracts seven factors and fifty attributes that are related to this matter mobbing. Next, by using Gunwoo's Social Network Service that is made for oneself and expressing extracting factors as '1' if they are related me or not '0'. And apply similarity function(Dice's coefficient) to attributes summation included in factors to calculate similarity between the users. Third, calculate optimizing weight choosing factors included attributes by applying neural network algorithm of SPSS Clementine and propose Mobbing Value(MV) Algorithm through this total summation. Finally through this algorithm which will contribute to efficient personnel management, we can grasp mobbing victims and tentative mobbing victims.

Design of Mobbing Value Computation Algorithm and Classification Model based on Social Network (Social Network 기반 Mobbing 지수 산정 알고리즘 및 분류 모델 설계)

  • Kim, Guk-Jin;Park, Gun-Woo;Lee, Sang-Hoon
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.352-355
    • /
    • 2009
  • 본 논문에서는 Mobbing(집단 따돌림) 현상에 관련된 7개의 요소(Factor)와 그 하위에 포함된 60개의 속성(Attribute)들을 선정한다. 다음으로 선정한 속성들에 대해 나와 사용자들 사이에 관계가 있으면 '1', 관계가 없으면 '0'으로 표현하고, 나와 사용자들간의 유사도 산정을 위해 각 요소안에 포함된 속성들의 합에 유사도 함수를 적용한다. 다음으로 클레멘타인의 인공신경망 알고리즘을 통해 속성들을 포함한 요소들이 취할 최적의 가중치를 산출하고, 이 값들의 총합으로 Mobbing 지수를 산정한다. 마지막으로 Social Network 사용자들의 Mobbing 지수를 본 논문에서 설계한 G2 Mobbing 성향 분류 모델(4개의 그룹; Ideal Group of the Social Network, Bullies, Aggressive victimes, Victimes)에 매핑하여 사용자들의 Mobbing 성향을 알아본다.