• Title/Summary/Keyword: MoS$_2$ electrode

Search Result 47, Processing Time 0.027 seconds

Wear and Friction Behavior on the Surface of Swash Plate of Compressor for Air Condition System of Automobile (자동차 에어컨용 압축기 사판의 표면 형태에 따른 마찰 마모 거동)

  • Kwon, Yun-Ki;Lee, Geon-Ho;Lee, Ki-Chun
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.88-94
    • /
    • 2011
  • The tribological characteristics of the swash plate surface of a compressor which is for automobile were investigated. For surface treatments, PTFE and $MoS_2$ are used as a solid lubricant, together with copper alloy. Test condition is set considering actual driving condition. Wear testing is conducted using pin on disk type tester, and the coefficient of friction and the temperature on friction surface are measured. Also, to determine the wear patterns, cross-section of friction surface is analyzed by SEM(scanning electrode microscope). The $MoS_2$, both at dry and lubricated conditions, friction surface and the coefficient of friction maintained rather stable results. But, the PTFE, at oil less condition, sample resulted in rather unstable condition. In case of copper alloy, quite higher friction coefficients(higher than 0.1) were obtained at dry condition. At the temperature of $125^{\circ}C$, seizure has occurred.

Gas sensing properties of polyacrylonitrile/metal oxide nanofibrous mat prepared by electrospinning

  • Lee, Deuk-Yong;Cho, Jung-Eun;Kim, Ye-Na;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.281-288
    • /
    • 2008
  • Polyacrylonitrile(PAN)/metal oxide(MO) nanocomposite mats with a thickness of 0.12 mm were electrospun by adding 0 to 10 wt% of MO nanoparticles ($Fe_2O_3$, ZnO, $SnO_2$, $Sb_2O_3-SnO_2$) into PAN. Pt electrode was patterned on $Al_2O_3$ substrate by DC sputtering and then the PAN(/MO) mats on the Pt patterned $Al_2O_3$ were electrically wired to investigate the $CO_2$ gas sensing properties. As the MO content rose, the fiber diameter decreased due to the presence of lumps caused by the presence of MOs in the fiber. The PAN/2% ZnO mat revealed a faster response time of 93 s and a relatively short recovery of 54 s with a ${\Delta}R$ of 0.031 M${\Omega}$ at a $CO_2$ concentration of 200 ppm. The difference in sensitivity was not observed significantly for the PAN/MO fiber mats in the $CO_2$ concentration range of 100 to 500 ppm. It can be concluded that an appropriate amount of MO nanoparticles in the PAN backbone leads to improvement of the $CO_2$ gas sensing properties.

Electrochemical Multi-Coloration of Molybdenum Oxide Bronzes

  • Lee, Sang-Min;Saji, Viswanathan S.;Lee, Chi-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2348-2352
    • /
    • 2013
  • We report a simple electrochemical approach in fabricating multiple colored molybdenum (Mo) oxide bronzes on the surface of a Mo-quartz electrode. A three step electrochemical batch process consisting of linear sweep voltammetry and anodic oxidation followed by cathodic reduction in neutral $K_2SO_4$ electrolyte at different end potentials, viz. -0.62, -0.80 and -1.60 V (vs. $Hg/HgSO_4$) yielded red, blue and yellow colored bronzes. The samples produced were analyzed by XRD, EDS, and SIMS. The color variation was suggested to be associated with the cations intercalation into the oxide formed and the simultaneous structural changes that occurred during the cathodic reduction in neutral aqueous medium.

Fabrication of NiS Thin Films as Counter Electrodes for Dye-Sensitized Solar Cells using Atomic Layer Deposition

  • Jeong, Jin-Won;Kim, Eun-Taek;Park, Su-Yong;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.276.2-276.2
    • /
    • 2016
  • Dye-sensitized solar cells (DSCs) are promising candidates for light-to-energy conversion devices due to their low-cost, easy fabrication and relative high conversion efficiency. An important component of DSCs is counter electrode (CE) collect electrons from external circuit and reduct I3- to I-. The conventional CEs are thermally decomposed Pt on fluorine-doped tin oxide (FTO) glass substrates, which have shown excellent performance and stability. However, Pt is not suitable in terms of cost effect. In this report, we demonstrated that nickel sulfide thin films by atomic layer deposition (ALD)-using Nickel(1-dimethylamino-2-methyl-2-butanolate)2 and hydrogen sulfide at low temperatures of $90-200^{\circ}C$-could be good CEs in DSCs. Notably, ALD allows the thin films to grow with good reproducibility, precise thickness control and excellent conformality at the angstrom or monolayer level. The nickel sulfide films were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, X-ray diffraction, hall measurements and cyclic voltammetry. The ALD grown nickel sulfide thin films showed high catalytic activity for the reduction of I3- to I- in DSC. The DSCs with the ALD-grown nickel sulfide thin films as CEs showed the solar cell efficiency of 7.12% which is comparable to that of the DSC with conventional Pt coated counter electrode (7.63%).

  • PDF

Morphological Structural and Electrical Properties of DC Magnetron Sputtered Mo Thin Films for Solar Cell Application

  • Fan, Rong;Jung, Sung-Hee;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.389-389
    • /
    • 2012
  • Molybdenum is one of the most important materials used as a back ohmic contact for $Cu(In,Ga)(Se,S)_2$ (CIGS) solar cells because it has good electrical properties as an inert and mechanically durable substrate during the absorber film growth. Sputter deposition is the common deposition process for Mo thin films. Molybdenum thin films were deposited on soda lime glass (SLG) substrates using direct-current planar magnetron sputtering technique. The outdiffusion of Na from the SLG through the Mo film to the CIGS based solar cell, also plays an important role in enhancing the device electrical properties and its performance. The structure, surface morphology and electrical characteristics of Mo thin films are generally dependent on deposition parameters such as DC power, pressure, distance between target and substrate, and deposition temperature. The aim of the present study is to show the resistivity of Mo layers, their crystallinity and morphologies, which are influenced by the substrate temperature. The thickness of Mo films is measured by Tencor-P1 profiler. The crystal structures are analyzed using X-ray diffraction (XRD: X'Pert MPD PRO / Philips). The resistivity of Mo thin films was measured by Hall effect measurement system (HMS-3000/0.55T). The surface morphology and grain shape of the films were examined by field emission scanning electron microscopy (FESEM: Hitachi S-4300). The chemical composition of the films was obtained by the energy dispersive X-ray spectroscopy (EDX). Finally the optimum substrate temperature as well as deposition conditions for Mo thin films will be developed.

  • PDF

Deposition of Alkali Metal Ions at Polypyrrole Film Electrodes Modified with Fullerene (플러렌으로 수식된 피를 고분자 피막전극에 알카리 금속이온의 포집)

  • Cha Seong-Keuck;Lee Sangchun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.1
    • /
    • pp.16-20
    • /
    • 2004
  • To electropolymerize Polypyrrole(ppy) film modified with fullerene $ions(full^-)$ the cell, Au/5 mM pyrrole, 1mM fullerene, 0.1M $TBABF_4,\;CH_2Cl_2/Pt$, was employed to Prepare the wafer-like type of $electrode/ppy(full^-)ppy(full^-){\ldots}$ electrodes. They were applied to deposit alkali metal ions with the cell of Au(quartz crystal analyzer; QCA)/ppy$(full^-)$, 0.01M metal ion(aq.)/Pt. The depositing rate constant of each ion for $Li^+,\;Na^+,\;K^+,\;Rb^+\;and\;Cs^+$, determined from the first order equation was $1.60\times10^{-8},\;3.13\times10^{-11},\;1.38\times10^{-9},\;2.71\times10^{-11}\;and\;2.98\times10^{-12}mo1.s^{-1}$ respectively. The calculated stoichiometry of the ions determined by quartz crystal microbalance(QCM) at the electrodes was $Li_7C_{60},\;Na_4C_{60},\;K_3C_{60},\;Rb_1C_{60}\;and\;Cs_1C_{60}$ respectively.

Study on Micro Dried Bio-potential Electrodes Using Conductive Epoxy on Textile Fabrics (전도성 에폭시를 이용한 직물 위에 구현된 건식 생체전위 전극의 연구)

  • Cha, Doo-Yeol;Jung, Jung-Mo;Kim, Deok-Su;Yang, Hee-Jun;Choi, Kyo-Sang;Choi, Jong-Myong;Chang, Sung-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.367-372
    • /
    • 2013
  • In this paper, micro dried bio-potential electrodes are demonstrated for sEMG (surface ElectroMyoGraphic) signal measurement using conductive epoxy on the textile fabric. Micro dried bio-potential electrodes on the textile fabric substrate have several advantages over the conventional wet/dry electrodes such as good feeling of wearing, possibility of extended-wearing due to the good ventilation. Also these electrodes on the textile fabric can easily apply to the curved skin surface. These electrodes are fabricated by the screen-printing process with the size of $1mm{\times}10mm$ and the resultant resistance of these electrodes have the average value of $0.4{\Omega}$. The conventional silver chloride electrode shows the average value of $0.3{\Omega}$. However, the electrode on the textile fabric are able to measure the sEMG signal without feeling of difference and this electrode shows the lower resistance of $1.03{\Omega}$ than conventional silver chloride electrode with $2.8{\Omega}$ in the condition of the very sharp curve surface (the radius of curvature is 40 mm).

AN ELECTROCHEMICAL STUDY ON THE CORROSION RESISTANCE OF THE VARIOUS IMPLANT METALS (수종 임플랜트 금속의 내식성에 관한 전기화학적 연구)

  • Jeon Jin-Young;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.3
    • /
    • pp.423-446
    • /
    • 1993
  • Titanium and its alloys are finding increasing use in medical devices and dental implants. The strong selling point of titanium is its resistance to the highly corrosive body fluids in which an implant must survive. This corrosion resistance is due to a tenacious passive oxide or film which exists on the metal's surface and renders it passive. Potentiodynamic polarization measurement is one of the most commonly used electro-chemical methods that have been applied to measure corrosion rates. And the potentiodynamic polarization test supplies detailed information such as open circuit, rupture, and passivation potential. Furthermore, it indicates the passive range and sensitivity to pitting corrosion. This study was designed to compare the corrosion resistance of the commonly used dental implant materials such as CP Ti, Ti-6A1-4V, Co-Cr-Mo alloy, and 316L stainless steel. And the effects of galvanic couples between titanium and the dental alloys were assessed for their useful-ness-as. materials for superstructure. The working electrode is the specimen , the reference electrode is a saturated calomel electrode (SCE), and the counter electrode is made of carbon. In $N_2-saturated$ 0.9% NaCl solutions, the potential scanning was performed starting from -800mV (SCE) and the scan rate was 1 mV/sec. At least three different polarization measurements were carried out for each material on separate specimen. The galvanic corrosion measurements were conducted in the zero-shunt ammeter with an implant supraconstruction surface ratio of 1:1. The contact current density was recorded over a 24-hour period. The results were as follows : 1. In potential-time curve, all specimens became increasingly more noble after immersion in the test solution and reached between -70mV and 50mV (SCE) respectively after 12 hours. 2. The Ti and Ti alloy in the saline solution were most resistant to corrosion. They showed the typical passive behavior which was exhibited over the entire experimental range. Therefore no breakdown potentials were observed. 3. Comparing the rupture potentials, Ti and Ti alloy had the high(:st value (because their break-down potentials were not observed in this study potential range ) followed by Co-Cr-Mo alloy and stainless steel (316L). So , the corrosion resistance of titanium was cecellent, Co-Cr-Mo alloy slightly inferior and stainless steel (316L) much less. 4. The contact current density sinks faster than any other galvanic couple in the case of Ti/gold alloy. 5. Ag-Pd alloy coupled with Ti yielded high current density in the early stage. Furthermore, Ti became anodic. 6. Ti/Ni-Cr alloy showed a relatively high galvanic current and a tendency to increase.

  • PDF

Design and fabrication of film Bulk Acoustic Resonator for flexible Microsystems (Flexible 마이크로시스템을 위한 압전 박막 공진기의 설계 및 제작)

  • 강유리;김용국;김수원;주병권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1224-1231
    • /
    • 2003
  • This paper reports on the air-gap type thin film bulk acoustic wave resonator(FBAR) using ultra thin wafer with thickness of 50$\mu\textrm{m}$. It was fabricated to realize a small size devices and integrated objects using MEMS technology for flexible microsystems. To reduce a error of experiment, MATLAB simulation was executed using material characteristic coefficient. Fabricated thin FBAR consisted of piezoelectric film sandwiched between metal electrodes. Used piezoelectric film was the aluminum nitride(AlN) and electrode was the molybdenum(Mo). Thin wafer was fabricated by wet etching and dry etching, and then handling wafer was used to prevent damage of FBAR. The series resonance frequency and the parallel frequency measured were 2.447㎓ and 2.487㎓, respectively. Active area is 100${\times}$100$\mu\textrm{m}$$^2$.Q-factor was 996.68 and K$^2$$\_$eff/ was 3.91%.

Transparent Oxide Thin Film Transistors with Transparent ZTO Channel and ZTO/Ag/ZTO Source/Drain Electrodes

  • Choi, Yoon-Young;Choi, Kwang-Hyuk;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.127-127
    • /
    • 2011
  • We investigate the transparent TFTs using a transparent ZnSnO3 (ZTO)/Ag/ZTO multilayer electrode as S/D electrodes with low resistivity of $3.24{\times}10^{-5}$ ohm-cm, and high transparency of 86.29% in ZTO based TFTs. The Transparent TFTs (TTFTs) are prepared on glass substrate coated 100 nm of ITO thin film. On atomic layer deposited $Al_2\;O_3$, 50 nm ZTO layer is deposited by RF magnetron sputtering through a shadow mask for channel layer using ZTO target with 1 : 1 molar ratio of ZnO : $SnO_2$. The power of 100W, the working pressure of 2mTorr, and the gas flow of Ar 20 sccm during the ZTO deposition. After channel layer deposition, a ZTO (35 nm)/Ag (12 nm)/ZTO(35 nm) multilayer is deposited by DC/RF magnetron sputtering to form transparent S/D electrodes which are patterned through the shadow mask. Devices are annealed in air at 300$^{\circ}C$ for 30 min following ZTO deposition. Using UV/Visible spectrometer, the optical transmittances of the TTFT using ZTO/Ag/ ZTO multilayer electrodes are compared with TFT using Mo electrode. The structural properties of ZTO based TTFT with ZTO/Ag/ZTO multilayer electrodes are analyzed by high resolution transmission electron microscopy (HREM) and X-ray photoelectron spectroscopy (XPS). The transfer and output characterization of ZTO TTFTs are examined by a customized probe station with HP4145B system in are.

  • PDF