• Title/Summary/Keyword: MoO$_3$ leaching solution

Search Result 5, Processing Time 0.018 seconds

Recovery of Copper Powder from MoO3 Leaching Solution (MoO3 침출공정 폐액으로부터 동분말의 회수기술)

  • Hong, Hyun-Seon;Jung, Hang-Chul;Kim, Geun-Hong;Kong, Man-Sik
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.351-357
    • /
    • 2009
  • A two-step recovery method was developed to produce copper powders from copper chloride waste solution as byproducts of MoO$_3$ leaching process. The first step consisted of replacing noble copper ions with external Fe$^{3+}$ ions which were formed by dissolving iron scraps in the copper chloride waste solution. The replaced copper ions were subsequently precipitated as copper powders. The second step was cementation of entire solution mixture to separate (pure) copper powders from aqueous solution of iron chloride. Cementation process variables of temperature, time, and added amount of iron scraps were optimized by using design of experiment method and individual effects on yield and efficiency of copper powder recovery were investigated. Copper powders thus obtained from cementation process were further characterized using various analytical tools such as XRD, SEM-EDS and laser diffraction and scattering methods.Cementation process necessitated further purification of recovered copper powders and centrifugal separation method was employed, which successfully yielded copper powders of more than 99% purity and average 1$\sim$2$\mu$m in size.

Recovery of Copper Powder form MoO3 Leaching Solution Using Cementation Reaction System (MoO3 침출공정 폐액으로부터 치환반응 시스템을 이용한 구리 분말 회수에 대한 연구)

  • Kim, Geon-Hong;Hong, Hyun-Seon;Jung, Hang-Chul
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.405-411
    • /
    • 2012
  • Recovery of copper powder from copper chloride solution used in $MoO_3$ leaching process was carried out using a cementation method. Cementation is a simple and economical process, necessitating less energy compared with other recovery methods. Cementation utilizes significant difference in standard reduction potential between copper and iron under standard condition. In the present research, Cementation process variables of temperature, time, and added amount of iron scraps were optimized by using design of experiment method and individual effects on yield and efficiency of copper powder recovery were investigated using bench-scale cementation reaction system. Copper powders thus obtained from cementation process were further characterized using various analytical tools such as XRF, SEM-EDS and laser diffraction and scattering methods. Cementation process necessitated further purification of recovered copper powders and centrifugal separation method was employed, which successfully yielded copper powders of more than 99.65% purity and average $1{\mu}m$ in size.

Recovery of Mo by liquid-liquid extraction from synthetic leaching solution of spent Inconel 713C super alloy and preparation of Mo compounds (폐 인코넬계(Inconel 713C)내열합금 모의 침출액으로부터 액-액 추출법에 의한 Mo의 회수 및 Mo 화합물 제조)

  • Ahn, Jong-Gwan;Kim, Da-young;In, Yong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.403-409
    • /
    • 2018
  • Inconel 713C which of a commercial Ni super alloy have the composition of 70 % Ni, 12 % Cr, 6 % Al and 4 % Mo. Mo is very expensive and have some economic value to recover in the alloy. In this study, liquid-liquid exraction(solvent extraction and stripping) has been performed to separate Mo from the synthetic leaching solution of spent Inconel 713C alloy and prepare to Mo powder by dying, evaporation and heat treatment. The experiments were conducted by using synthetic leaching solution which was prepared $NaMoO_4$ $2H_2O$ by dissolved in distilled water. Alamine336 and Cyanex272 dissolved in kerosene were used as extractants. The extraction percentage of Mo by Alamine336 is 99 % in the condition of the range of pH 1 to 4 and 1 % of concentration of Alamine336. The stripping solutions are used by HCl, $H_2SO_4$ and $HNO_3$ solutions and the concentrations were controlled by distilled water. The concentrations of HCl, $H_2SO_4$ and $HNO_3$ as stripping solutions are increased, the stripping percentages of Mo are increased and the stripping percentage of Mo by $HNO_3$ is higher than other stripping solutions. After liquid-liquid extraction and heat treatment, $MoO_3$ powder which of the purity of 97.5 % was prepared.

Leaching of Molybdenite by Hydrochloric Acid Solution Containing Sodium Chlorate (NaClO3를 함유한 염산용액으로 몰리브데나이트광의 침출)

  • Nguyen, Thi Nhan Hau;Nguyen, Thi Thu Huong;Lee, Man Seung
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.26-33
    • /
    • 2022
  • Molybdenum is widely used in many materials; thus, its recovery from ores and secondary resources has attracted considerable attention. In this study, the leaching of molybdenite ore using hydrochloric acid containing sodium chlorate as an oxidizing agent was studied. The effects of several variables, such as the concentrations of HCl and NaClO3, reaction temperature and time, and pulp density, on the leaching of the ore were investigated. Under strong acidic and oxidizing conditions, the sulfide in the ore was dissolved as a sulfate ion, which formed gypsum with Ca(II), leading to a decrease in the leaching percentage of Mo(VI) from the ore. The leaching percentage of molybdenum was greater than 90%, while those of iron, calcium, and silicon were 38, 29, and 67%, respectively, under the optimum conditions: 2.0 M HCl, 0.5 M NaClO3, pulp density of 5 g/L, temperature of 90 ℃, and treatment time of 60 min.

Preparation of Birnessite (δ-MnO2) from Acid Leaching Solution of Spent Alkaline Manganese Batteries and Removals of 1-naphthol (폐 알칼리망간전지의 산 침출액으로부터 버네사이트(δ-MnO2)의 제조 및 1-naphthol 제거)

  • Eom, Won-Suk;Lee, Han-Saem;Rhee, Dong-Seok;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.603-610
    • /
    • 2016
  • This work studies the synthesis of birnessite (${\delta}-MnO_2$), a catalyst of oxidative-coupling reactions, from the powder of spent alkaline manganese batteries (SABP, <8 mesh) and evaluate its reactivity for 1-naphthol (1-NP) removals. Manganese oxides using commercial reagents ($MnSO_4$, $MnCl_2$) and the acid birnessite (A-Bir) by McKenzie method were also synthesized, and their crystallinity and reactivity for 1-NP were compared with one another. 96% Mn and 98% Zn were extracted from SABP by acid leaching at the condition of solid/liquid (S/L) ratio 1:10 in $1.0M\;H_2SO_4+10.5%\;H_2O_2$ at $60^{\circ}C$. From the acid leaching solution, 69% (at pH 8) and 94.3% (pH>13) of Mn were separated by hydroxide precipitation. Optimal OH/Mn mixing ratio (mol/mol) for the manganese oxide (MO) synthesis by alkaline (NaOH) hydrothermal techniques was 6.0. Under this condition, the best 1-NP removal efficiency was observed and XRD analysis confirmed that the MOs are corresponding to birnessite. Kinetic constants (k, at pH 6) for the 1-NP removals of the birnessites obtained from Mn recovered at pH 8 (${Mn^{2+}}_{(aq)}$) and pH>13 ($Mn(OH)_{2(s)}$) are 0.112 and $0.106min^{-1}$, respectively, which are similar to that from $MnSO_4$ reagent ($0.117min^{-1}$). The results indicated that the birnessite prepared from the SABP as a raw material could be used as an oxidative-coupling catalyst for removals of trace phenolic compounds in soil and water, and propose the recycle scheme of SAB for the birnessite synthesis.