• Title/Summary/Keyword: MnO2

Search Result 2,722, Processing Time 0.031 seconds

Synthesis of ZnS:Mn-Gly-C60 Nanocomposites and Their Photocatalytic Activity of Brilliant Green

  • Li, Jiulong;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.75-79
    • /
    • 2018
  • ZnS:Mn-glycine (ZnS:Mn-Gly) nanocomposites were synthesized by capping ZnS:Mn nanocomposites with glycine. Zinc sulfate heptahydrate ($ZnSO_4{\cdot}7H_2O$), glycine ($C_2H_5NO_2$), manganese sulfate monohydrate ($MnSO_4{\cdot}H_2O$), and sodium sulfide ($Na_2S$) were used as the source reagents. $ZnS:Mn-Gly-C_{60}$ nanocomposites were obtained by heating the ZnS:Mn-Gly nanocomposites and fullerene ($C_{60}$) at a 2:1 mass ratio in an electric furnace at $700^{\circ}C$ for 2 h. X-ray diffraction (XRD) was used to characterize the crystal structure of the synthesized nanocomposites. The photocatalytic activity of the $ZnS:Mn-Gly-C_{60}$ nanocomposites was evaluated, via the degradation of brilliant green (BG) dye under 254 nm irradiation, with a UV-vis spectrophotometer.

A Study on the Characterstics of the BaT$iO_3$PTC Thermistor for Fire Detection Sensor (화재감지센서 활용을 위한 BaT$iO_3$계 PTC 서미스터의 특성에 관한 연구)

  • 추순남;최명규;백동현;박정철
    • Fire Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.15-19
    • /
    • 2002
  • This dissertation is about the development of $BaTiO_3$-type PTC(Positive Temperature Coefficient) thermistor by composition method. A multilayer-type PTC samples were fabricated under optimal conditions after setting the experimental composition equation as ($Ba_{0.95-x}$S $r_{0.05}$$Ca_{x}$ )$TiO_3$-$0.01TiO_2$-$0.01SiO_2$-$\alpha$$MnCO_3$-$\beta$N $b_2$ $O_{5}$.) and their testing results were analyzed. The optimal sin-tering and cooling temperatures were 13$50^{\circ}C$ for two hours and $100^{\circ}C$/h for an hour, respectively; By composing Ca and Mn, dopants to lower the resistivity at room temperature, and Nb, a dopant to raise peak resistivity(Ca:5 mol%, Mn:0.08 mol%, Nb:0.18 mol%), appropriately, a PTC thermistor, having the characteristics of relatively low resistivity at room temperature and high peak resistivity and a good temperature coefficient, has been developed. And we find that it is possible of application for fire detection sensor.r.r.

Theoretical Calculation of Zero Field Splitting of $Mn^{2+}$ Ion in $LiTaO_3$Crystal

  • Yeom, T.H;Lee, S.H
    • Journal of Magnetics
    • /
    • v.6 no.3
    • /
    • pp.77-79
    • /
    • 2001
  • The semi-empirical superposition model has been applied to calculate the zero field splitting parameters of $Mn^{2+}$ion in $LiTaO_3$ single crystal, assuming that $Mn^{2+}$ion occupies one of two possible sites: $Li^{l+} \;or\; Ta^{5+}$ site, respectively. The 2nd-order axial zero field splitting parameters are $958\times10^{-4}cm^{-1}\; at\; Li^{1+}$ site and $193\times 10^{-4}cm^{-1} \;at\; Ta^{5+}$ site for $Mn^{2+}$ions. The 4th-order zero field splitting parameters at $Li^{l+} \;and\; Ta^{5+}$ sites are also determined. These calculated zero field splitting parameters are very important to determine the substitutional sites of doped impurity ions in $LiTaO_3$ crystal.

  • PDF

Oxidation Reactions of Carbon Monoxide on NiO and Mn$O_2$ Catalysts (NiO 및 Mn$O_2$ 촉매하에서의 일산화탄소의 산화반응)

  • Choo Kwang Yul;Boo Bong Hyun;Chang Sei Hun Se Heon
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.6
    • /
    • pp.370-379
    • /
    • 1978
  • The specific rate constants for the oxidation reactions of carbon monoxide on a unit catalytic surface area were measured. The catalysts used were NiO made from $Ni(NO_3)_2,\;and\;Ni(OH)_2$, and Mn$O_2$ made from Mn$(NO_3)_2$. At low pressure the reaction rate was found to be of second order and the activation energies were 12 kcal/mole (on NiO made from Ni$(NO_3)_2$, 17 kcal/mole (on NiO made from Ni$(OH)_2)$) and 18 kcal/mole (on Mn$O_2$). Plausible reaction mechanisms were proposed from the experimentally determined reaction orders.

  • PDF

Preparation and Luminescence Properties of $Zn_2$$SiO_4$:Mn,Al Green Phosphors by Sol-gel Technique (졸-겔법에 의한 $Zn_2$$SiO_4$:Mn, Al 녹색 형광체의 제조 및 발광 특성)

  • 박희동;성부용;한정화;김대수
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.4
    • /
    • pp.337-342
    • /
    • 2001
  • PDP(Plasma Display Panel)용 녹색 형광체인 Zn$_2$SiO$_4$:Mn에 채-dopant로 Al을 첨가하여 졸-겔법으로 합성하였다. 졸-겔법으로 제조한 형광체는 기존의 고상 반응에 의해 합성된 경우보다 낮은 온도(1000-110$0^{\circ}C$)에서 Zn$_2$SiO$_4$단일상을 형성하였으며, 300-500nm의 비교적 균일한 입자를 얻을 수 있었다. 또한, co-dopant인 Al을 첨가함으로써 발광휘도를 향상시키고, 전광시간을 줄일 수 있었다. 한편, TEOS의 가수분해시 $H_2O$/TEOS 비율을 조절하여 발광의 최적 조건을 조사하였다.

  • PDF

RECYCLING PROCESS OF U3O8 POWDER IN MnO-Al2O3 DOPED LARGE GRAIN UO2 PELLETS

  • Oh, Jang Soo;Kim, Dong-Joo;Yang, Jae Ho;Kim, Keon Sik;Rhee, Young Woo;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.117-124
    • /
    • 2014
  • The effect of various process variables on the powder properties of recycled $U_3O_8$ from MnO-$Al_2O_3$ doped large grain $UO_2$ pellets and the effect of those recycled $U_3O_8$ powders on the sintered density and grain size of MnO-$Al_2O_3$ doped large grain $UO_2$ pellets have been investigated. The evolution of morphology, size, and BET surface area of the recycled $U_3O_8$ powders according to the respective variation of the thermo-mechanical treatment variables of oxidation temperature, powder milling, and sequential cyclic heat treatment of oxidation and then reduction was examined. The correlation between the BET surface area of recycled $U_3O_8$ powder and the sintered pellet properties of MnO-$Al_2O_3$ doped pellets showed that the pellet density and grain size of doped pellets were increased and then saturated by increasing the BET surface area of the recycled $U_3O_8$ powder. The density and grain size of the pellets were maximized when the BET surface area of the recycled $U_3O_8$ powder was in the vicinity of $3m^2/g$. Among the process variables applied in this study, the cyclic heat treatment followed by low temperature oxidation was a potential process combination to obtain the sinter-active $U_3O_8$ powder.

A Study on the Improvement of Pyroelectric Coefficient in the PSS-PT-PZ Infrared Sensor (PSS-PT-PZ 적외선 센서의 초전계수향상에 관한 연구)

  • 이성갑;배선기;이영희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.6
    • /
    • pp.652-660
    • /
    • 1992
  • 0.10Pb(SbS11/2TSnS11/2T)OS13T-0.25PbTiOS13T-0.65PbZrOS13T ceramics modified by LaS12TOS13T(1[mol%]) and MnOS12T(0-0.30[mol%]) were fabricated. The structural and pyroelectric properties with contents of MnOS12T were studied. Crystal structure of a specimen was rhombohedral type and average grain sizes were decreased with increasing the contents of MnOS12T. Relative dielectric constant and dielectric loss factor were minimum in the specimens doped 0.24[mol%]MnOS12T. (PbS10.99TLaS10.01T)[(SbS11/2TSnS11/2T) TiS10.25TZrS10.65T]OS13T specimen modified 0.24[mol%]MnOS12T showed the good pyroelectric properties and pyroelectric coefficient and voltage responsivity were 6.73x10S0-8T[C/cmS02TK], 125[V/W], respectively. Voltage responsivity was increased with decreasing the chopper frequency.

Microwave Dielectric Properties of $MnO_2$ Added $(Pb_{0.45}Ca_{0.55})(Fe_{0.5}Nb_{0.5})O_3$ Ceramics ($MnO_2$가 첨가된 $(Pb_{0.45}Ca_{0.55})(Fe_{0.5}Nb_{0.5})O_3$ 세라믹스의 마이크로파 유전특성)

  • Lee, Sang-Min;Lee, Doo-Hee;Yoon, Hyen-Sang;Park, Chang-Yub
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.237-239
    • /
    • 1993
  • $MnO_2$ added $(Pb_{0.45}Ca_{0.55})(Fe_{0.5}Nb_{0.5})O_3$ was calcined at $850^{\circ}C$ for two hours and sintered at $1100^{\circ}C$ for two hours. The microstructure was examined using XRD and SEM. The dielectric constant, the quality factor, and the temperature stability was measured using Hakki and Coleman method. Dielectric constant was improved to 94 from 0.5wt% $MnO_2$ added sample with $Q{\cdot}f=4260GHz$ and acceptable ${\tau}_f$ (< $20ppm/^{\circ}C$).

  • PDF

Enhanced Electrochemical Properties of Surface Modified LiMn2O4 by Li-Fe Composites for Rechargeable Lithium Ion Batteries

  • Shi, Jin-Yi;Yi, Cheol-Woo;Liang, Lianhua;Kim, Keon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.309-314
    • /
    • 2010
  • The surface modified $LiMn_2O_4$ materials with Li-Fe composites were prepared by a sol-gel method to improve the electrochemical performance of $LiMn_2O_4$ and were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and transmission electron microscopy (TEM)-EDS. XRD results indicate that all the samples (modified and pristine samples) have cubic spinel structures, and XRD, XPS, and TEM-EDS data reveal the formation of $Li(Li_xFe_xMn_{2-2x})O_4$ solid solution on the surface of particles. For the electrochemical properties, the modified material demonstrated dramatically enhanced reversibility and stability even at elevated temperature. These improvements are attributed to the formation of the solid solution, and thus-formed solid solution phase on the surface of $LiMn_2O_4$ particle reduces the dissolution of Mn ion and suppresses the Jahn-Teller effect.

Effect of Zn and Mn on the Synthesis of Zn2SiO4:Mn2+ Phosphor by SHS (자전연소 합성법을 이용한 Zn2SiO4:Mn2+ 형광체 합성시 Zn 및 Mn의 영향)

  • Lee Jong Eun;Kim Byeong Beom;Lee Hyeok Hui;Won Chang Whan
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.889-892
    • /
    • 2004
  • The synthesis of $Zn_{2}SiO_4:Mn^{2+}$ for PDP green phosphor by SHS(Self-propagating High temperature Synthesis method) was studied. The precursors were well mixed and cold compacted. And then, the green pellet was synthesized at high temperature through self-propagating high temperature zone. Because this reaction uses the heat resulted from the oxidation of Zn metal powder in this system, Zn/ZnO mole ratio is one of the most important reaction variable. Throughout several experiments, the optimal condition of Zn/ZnO mole ratio and Mn concentration are 1.2/0.8 and 0.05mo1e, respectively.