• 제목/요약/키워드: MnAl

검색결과 1,113건 처리시간 0.029초

Abundances of refractory elements for stars with extrasolar planets : New samples

  • 박선경;강원석;이상각;이정은
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.147.1-147.1
    • /
    • 2011
  • We investigate the chemical differentiation in F, G, K type stars with and without planets to extend the work by Kang et al. (2011) to various spectral types. Since the primordial chemical composition has been preserved in the stellar atmosphere, stellar metallicity can provide the information on the primordial material, which is the potential building block of planets. Therefore, we can explore the favored conditions for planet formation through the comparison of chemical compositions between planet-host stars (PHSs) and stars without planets. In this work, we analyze 19 F, G, and K type stars. In each spectrum, we measure equivalent widths (EWs) of Fe, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, and Ni using TAME (Tools for Automatic Measurement of Equivalent width). The abundances of these species can be derived with the measured EWs and MOOG code (Sneden 1973). Like results by precedent studies, we find that planet-host stars have abundances higher than stars without planets. The typical difference in the abundances of Na, Mn, Co and Ni is $0.4{\pm}0.2dex$. In addition, as found in Kang et al. (2011), Mn is the most different element between PHSs and comparison stars.

  • PDF

Novel process of rare-earth free magnet and thermochemical route for the fabrication of permanent magnet

  • Choi, Chul-Jin
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2013년도 자성 및 자성재료 국제학술대회
    • /
    • pp.89-89
    • /
    • 2013
  • Rare earth (RE) - transition metal based high energy density magnets are of immense significance in various engineering applications. $Nd_2Fe_{14}B$ magnets possess the highest energy product and are widely used in whole industries. Simultaneously, composite alloys that are cheap, cost effective and strong commercially available have drawn great attention, because rare-earth metals are costly, less abundant and strategic shortage. We designed rare-earth free alloys and fabrication process and developed novel route to prepare $Nd_2Fe_{14}B$ powders by wet process employing spray drying and reduction-diffusion (R-D) without the use of high purity metals as raw material. MnAl-base permanent magnetic powders are potentially important material for rare-earth free magnets. We have prepared the nano-sized MnAl powders by plasma arc discharge and micron-sized MnAl powders by gas atomization. They showed good magnetic property, compared with that from conventional processes. $Nd_2Fe_{14}B$ powders with high coercivity of more than 10 kOe were successfully synthesized by adjusting R-D step, followed by precise washing system. It is considered that this process can be applied for the recycling of RE-elements extracted from ewaste including motors.

  • PDF

구리와 니켈이 포함된 Fe-9Mn-0.2C-3Al-0.5Si 중망간강의 미세조직과 기계적 특성에 미치는 2상역 어닐링의 영향 (Effect of Intercritical Annealing on Microstructure and Mechanical Properties of Fe-9Mn-0.2C-3Al-0.5Si Medium Manganese Steels Containing Cu and Ni)

  • 이승완;신승혁;황병철
    • 한국재료학회지
    • /
    • 제30권1호
    • /
    • pp.44-49
    • /
    • 2020
  • The effect of intercritical annealing temperature on the microstructure and mechanical properties of Fe-9Mn-0.2C-3Al-0.5Si medium manganese steels containing Cu and Ni is investigated in this study. Six kinds of medium manganese steels are fabricated by varying the chemical composition and intercritical annealing temperature. Hardness and tensile tests are performed to examine the correlation of microstructure and mechanical properties for the intercritical annealed medium manganese steels containing Cu and Ni. The microstructures of all the steels are composed mostly of lath ferrite, reverted austenite and cementite, regardless of annealing temperature. The room-temperature tensile test results show that the yield and tensile strengths decrease with increasing intercritical annealing temperature due to higher volume fraction and larger thickness of reverted austenite. On the other hand, total and uniform elongations, and strain hardening exponent increase due to higher dislocation density because transformation-induced plasticity is promoted with increasing annealing temperature by reduction in reverted austenite stability.

모발의 탈색 및 퍼머넌트 웨이브 효과에 따른 다-원소금속 성분의 함량 분석 (Analysis of multi-elemental concentration in hair according to effect of permanent wave and bleaching agents)

  • 김준광;하병조
    • 분석과학
    • /
    • 제20권6호
    • /
    • pp.524-528
    • /
    • 2007
  • Variations of the twenty one metal components (Mg, Al, V, Cr, Co, Sr, Ba, Na, K Mn, Fe, Cu, Zn, As, Hg, Pb, Ca, P, Mo, Cd, Sb) were analyzed in human hair sample by inductively coupled plasma mass spectrometry (ICP-MS). The effect of bleach and permanent wave manipulation on the elemental composition of hair were investigated. It was found that the composition of hair varied with hair bleach and permanent wave. Hair sample was collected from male in the age of thirties. Hair sample (0.05 g) was added to the Teflon digestion bomb together with 1.5 mL of nitric acid and an appropriate amount of In as an internal standard. The sample was then decomposed in the microwave digestion system. In normal hair, the contents of V, Cr, Mn, Fe, Co, Cu, Zn, As, Mo, Cd, Sb and P were increased in permanent wave hair, and Mg, Al, V, Co, Sr, Ba, Na and K were increased in bleached hair. But Mg, Al, Sr, Ba, Hg, Pb, Na, K, and Ca contents were decreased with permanent wave hair, Mn, Fe, Cu, Zn, As, Hg, Pb and Ca contents were decreased with bleached hair.

Crystal Structure of an Acetylene Sorption Complex of Dehydrated Fully Mn(II)-Exchanged Zeolite X

  • 배명남;김양
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권10호
    • /
    • pp.1095-1099
    • /
    • 1998
  • The crystal structure of an acetylene sorption complex of dehydrated fully Mn(Ⅱ)-exchanged zeolite X, Mn46Si100Al92O384·30C2H2 (a=24.705(3) Å) has been determined by single-crystal X-ray diffraction techniques. The structure was solved and refined in the cubic space group Fd3 at 21(l) ℃. The complex was prepared by dehydration at 380 ℃ and 2 x 10-6 Torr for 2 days, followed by exposure to 300 Torr of acetylene gas for 2 h at 24 ℃. The structure was refined to the final error indices, R1=0.060 and R2=0.054 with 383 reflections for which I > 3σ(Ⅰ). In the structure, Mn2+ ions are located at two different crystallographic sites; sixteen Mn2+ ions at site I are located at the centers of the double six rings and thirty Mn2+ ions are found at site Ⅱ in the supercage, respectively. Each of these latter Mn2+ ions is recessed ca. 0.385(2) Å into the supercage from its three-oxygen plane. Thirty acetylene molecules are sorbed per unit cell. Each Mn2+ ion at site Ⅱ lies on a threefold axis in the supercage of the unit cell, close to three equivalent trigonally arranged zeolite framework oxygen atoms (Mn(Ⅱ)-O=2.135(9) Å) and symmetrically to both carbon atoms of a C2H2 molecules. At these latter distances, the Mn(Ⅱ)-C interactions are weak (Mn(Ⅱ)-C=2.70(5) Å), probably resulting from electrostatic attractions between the divalent cations and the polarizable π-electron density of the acetylene molecules.

Recent Development of 5 V Cathode Materials for Lithium Rechargeable Batteries

  • Kim Hyun-Soo;Periasamy Padikkasu;Moon Seong-In
    • 전기화학회지
    • /
    • 제7권1호
    • /
    • pp.1-8
    • /
    • 2004
  • This paper deals with the recent development of high-voltage cathode materials of mono- and di- metal ions substituted spinel $LiMn_2O_4$ for lithium batteries. $LiCu_xMn_{2-x}O_4(0{\leq}x{\leq}0.5)$ shows reversible intercalation/deintercalation in two potential regions, $3.9\~43\;and\;4.8-5.0V$ and stable electrochemical cycling behavior but with low capacity. $LiNi_{0.5}Mn_{1.5}O_4$ obtained by a sol-gel process delivers a capacity of 127mAh $g^{-1}$ on the first cycle and sustains a value of 124 mAh $g^{-1}$ even after the 60th cycle. The $Li_xCr_yMn_{2-y}O_4(0{\leq}x{\leq}0.5)$ solid-solutions exhibit enhanced specific capacity, larger average voltage, and improved cycling behaviors for low Cr content. $LiCr_yMn_{2-y}O_4$ presents a reversible Li deintercalation process at 4.9V, whose capacity is proportional to the Cr content in the range of $0.25{\leq}x{\leq}0.5$ and delivers higher capacities. $LiM_yCr_{0.5-y}Mn_{1.5}O_4(M=Fe\;or\;Al)$ shows that the capacity retention is lowered compared with lithium manganate. The cumulative capacities obtainable with Al-substitutted materials are less than those with Fe-substituted materials. $LiCr_xNi_{0.5-x}Mn_{1.5}O_4(x=0.1)$ delivers a high initial capacity of 1$152mAh\;g^{-1}$ with excellent cycleability.

Analysis of the Inhibition Layer of Galvanized Dual-Phase Steels

  • Wang, K.K.;Wang, H.-P.;Chang, L.;Gan, D.;Chen, T.-R.;Chen, H.-B.
    • Corrosion Science and Technology
    • /
    • 제11권1호
    • /
    • pp.9-14
    • /
    • 2012
  • The formation of the Fe-Al inhibition layer in hot-dip galvanizing is a confusing issue for a long time. This study presents a characterization result on the inhibition layer formed on C-Mn-Cr and C-Mn-Si dual-phase steels after a short time galvanizing. The samples were annealed at $800^{\circ}C$ for 60 s in $N_{2}$-10% $H_{2}$ atmosphere with a dew point of $-30^{\circ}C$, and were then galvanized in a bath containing 0.2 %Al. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) was employed for characterization. The TEM electron diffraction shows that only $Fe_{2}Al_{5}$ intermetallic phase was formed. No orientation relationship between the $Fe_{2}Al_{5}$ phase and the steel substrate could be identified. Two peaks of Al 2p photoelectrons, one from metallic aluminum and the other from $Al^{3+}$ ions, were detected in the inhibition layer, indicating that the layer is in fact a mixture of $Fe_{2}Al_{5}$ and $Al_{2}O_{3}$. TEM/EDS analysis verifies the existence of $Al_{2}O_{3}$ in the boundaries of $Fe_{2}Al_{5}$ grains. The nucleation of $Fe_{2}Al_{5}$ and the reduction of the surface oxide probably proceeded concurrently on galvanizing, and the residual oxides prohibited the heteroepitaxial growth of $Fe_{2}Al_{5}$.