• Title/Summary/Keyword: MnAl

Search Result 1,113, Processing Time 0.026 seconds

CoFe Layer Thickness and Plasma Oxidation Condition Dependence on Tunnel Magnetoresistance (CoFe의 삽입과 산화조건에 따른 자기 터널 접합의 자기저항특성에 관한 연구)

  • 이성래;박병준
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.196-201
    • /
    • 2001
  • The dependence of CoFe interfacial layer thickness and plasma oxidation condition on tunneling magnetoresistance (TMR) in Ta/NiFe/FeMn/NiFe/Al$_2$O$_3$/NiFe/Ta tunnel junctions was investigated. As the CoFe layer thickness increases, TMR ratio rapidly increases to 13.7 % and decreases with further increase of the CoFe layer thickness. The increase of TMR with the CoFe thickness up to 25 was thought to be due mails to the high spin-polarization of CoFe. The maximum MR of 15.3% was obtained in the Si(100)/Ta(50 )/NiFe(60 )/FeMn(250 )/NiFe(70 )/Al$_2$O$_3$/NiFe(150 )/Ta(50 ) magnetic tunnel junction with a 16 Al oxidized for 40 sec using a Ar/O$_2$ (1:4) mixture gas.

  • PDF

Effects of Adding Mg to AlSi Coating for Hot Stamping Steel (자동차용 핫스탬핑 AlSi 도금중 Mg 첨가효과)

  • Yang, Wonseog;Lee, Jeamin;Kim, Changkyu;Ahn, Seungho;Castaneda, Homero
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.196-203
    • /
    • 2021
  • To improve corrosion resistance and reduce the hydrogen uptake of 22MnB5, up to 5% Mg was added to the AlSi coating of 22MnB5. After hot-stamping and electrocoating were done on the metallic-coated specimen, the surface characteristics of the steel, hydrogen uptake content, and corrosion resistance were examined by transmittance electron microscopy, thermal desorption spectrometry, cyclic corrosion testing, and electrochemical impedance spectroscopy. Mg was investigated as MgO on the surface layer after hot-stamping while it existed as Mg2Si before hot-stamping. The total hydrogen content of 22MnB5 was decreased along with the Mg content. However, there was no difference at 0.2 wt% or more. When a small amount of Mg was added, the coating corrosion resistance was decreased, but when it was added at around 1.0 wt%, the greatest corrosion resistance increase was seen. However, when 3 wt% or more was added excessively, the corrosion resistance was decreased. MgO on the surface was considered to suppress H uptake by the AlSi melting solution and increase the barrier effect of the coating.

Effect of Ti, B, Zr Elements on Grain Refinement and Castability of Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe Casting Alloy (주조용 Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe 합금의 결정립 미세화와 주조특성에 미치는 Ti, B, Zr 첨가원소의 영향)

  • Kim, Heon-Joo;Park, Su-Min
    • Journal of Korea Foundry Society
    • /
    • v.35 no.5
    • /
    • pp.120-127
    • /
    • 2015
  • The effects of Ti, B and Zr on grain refinement and castability were investigated in Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe alloy. Measurement of cooling curve and micro-structure observation were performed to analyze the effects of the addition of minor elements Ti, B and Zr during solidification. The prominence of effect on grain refinement was in increasing order for Ti, Zr and B element. Fine grain size and an increase of the crystallization temperature for ${\alpha}$-Al solution were evident as the amount of addition elements increased in this study. Addition of 0.15wt% Ti was most effective for grain refinement, and the resulting grain size of ${\alpha}$-Al solution for shell mold and steel mold were $72.3{\mu}m$ and $23.5{\mu}m$, respectively. Fluidity and shrinkage tests were perform to evaluate the castability of the alloy. Maximum fluidity length and minimum ratio of micro shrinkage were recorded for 0.15wt% Ti addition due to the effect of the finest grain size.

Purification of Waste Acid and Manufacture of Complex Oxide and Mn-Ferrite Powder by Co-Roasting Process (폐산의 정제 기술 및 분무 배소법에 의한 복합 산화물과 Mn-Ferrite 분말의 제조)

  • 유재근;김정석;민병구;성낙일
    • Resources Recycling
    • /
    • v.7 no.4
    • /
    • pp.64-75
    • /
    • 1998
  • The purpose of this study is to produce high putity composite powder composed of Fe-oxide, Mn-oxide and Mn-ferrite having superior homogencity in composition and particle size distribution by co-roasting process. Binary component metal (Fe, Mn) chloride solutions were produced by dissolving mill scale and ferro-mangancse alloy in hydrochloric acid. These chloride solutions contained the impurities such as SiO$_{2}$, P, Al, Ca and Na, which were originated from the Fe/Mn source materials. The neutralization and polymeric coagulant method were adoped to refine the hydrochloric liquor. When pH is far below the isoelectric point (pH 2-3), the SiO$_{2}$ was the most effectively reduced element, while other impurities remained unchanged. By increasing pH above 3, most of the impurities could be reduced effectively due to the coprecipitation reaction. The polymeric coagulants such as poly vinyl alcohol, resin amine and ammonium molybdate were found to have no effect on the spray roaster designed by the authors. The produced oxide powders were confirmed to be mixtures of Fe-oxide, Mn-oxide and mn-ferrite. the powders were homogeneously mixed and the particle size increased sleeply with increasing co-roasting temperature.

  • PDF

The Study on Microstructure and Magnetic Properties of Ferrite with Various Fe Contents in $Mg_{1.9-2x}Mn_{0.05}Fe_{4x}O_{4+${\gamma}$}+2_{wt%} Al_2O_3$ ($Mg_{1.9-2x}Mn_{0.05}Fe_{4x}O_{4+${\gamma}$}+2_{wt%} Al_2O_3$ 조성내 Fe량 변화에 따른 페라이트의 미세구조 및 자기적 특성 연구)

  • 김성재;정명득;강대석
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.235-240
    • /
    • 1994
  • The electric and magnetic properties of Mg1.9-2xMn0.05Fe4xO4+${\gamma}$+2wt% Al2O3, and its microstructure have been investigated as a function of ferrite composition (x=0.45, 0.5, 0.55). The microstructure turned out to be independent on the ferrite composition. The resistivity was decreased with increasing Fe contents, whereas the Curie temperature decreased. Saturation magnetization was varied from 1741 to 2022 G with composition, and squareness ratio (SR), coercive force (BHc) were decreased and increased with increasing Fe contents respectively, so the sample which SR and BHc were 0.97 Oe and 1.49 Oe can be attainable at x=0.45.

  • PDF

Effect of Reinforcement Content on Damping Capacities for Castable Aluminum Matrix Composites Reinforced with SiC and Graphite Particles (SiC와 흑연 입자 강화 주조용 Al기지 복합재료의 진동감쇠능에 미치는 강화입자조성의 효과)

  • 최유송
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.47-58
    • /
    • 2004
  • Loss factors of A356, Mn-Cu alloy and aluminum matrix composites reinforced with $SiC_p$ and Ni-coated graphite particles at various contents have been investigated using clamped-free cantilever beam method. The loss factors of half-power bandwidth of the specimens were measured over a wide range of frequencies from 50 to 3300Hz. Among the specimens, Al-10%$SiC_p$-10%$C_p$ showed the highest loss factor at the mode I, while Mn-Cu alloy showed the highest loss factors at the modes II and III. Consequently, at the mode I the Al-10%$SiC_p$--10%$C_p$ showed the loss factor of 0.00093, which is 2.64 and 1.58 times higher than those of A356 and Mn-Cu alloy, respectively.

Hydrogen Production by Auto-thermal Reforming of Ethanol over $M/Al_2O_3$ (M = Mn, Fe, Co, Ni, Cu) Catalysts ($M/Al_2O_3$ (M = Mn, Fe, Co, Ni, Cu) 촉매 상에서 에탄올 자열개질반응에 의한 수소 제조)

  • Youn, Min-Hye;Seo, Jeong-Gil;Cho, Kyung-Min;Park, Sun-Young;Kim, Pil;Song, In-Kyu
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.287-292
    • /
    • 2007
  • [ $M/Al_2O_3$ ] (M = Mn, Fe, Co, Ni, Cu) catalysts supported on commercial alumina ($Al_2O_3$) were prepared by an impregnation method, and were applied to the hydrogen production by auto-thermal reforming of ethanol. It was revealed that each catalyst retained its own metallic phase and product distribution strongly depended on the identity of active metal. Among the catalysts prepared, $Ni/Al_2O_3$ and $Co/Al_2O_3$ showed the best catalytic performance in the auto-thermal reforming of ethanol. However, the reaction mechanisms over these two catalysts were different. Ni/Al_2O_3 catalyst showed 100% ethanol conversion at $500^{\circ}C$, but it exhibited a rapid decrease in hydrogen selectivity. Although $Co/Al_2O_3$ catalyst showed an excellent performance in hydrogen selectivity, on the other hand, no significant improvement in hydrogen yield was observed due to the low ethanol conversion over the catalyst.

  • PDF

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.