• 제목/요약/키워드: MnAl

검색결과 1,113건 처리시간 0.032초

물 분해 수소제조를 위한 금속산화물들의 반응특성 (The Properties of the Several Metal Oxides in the Water-splitting for H2 Production)

  • 손현명;박주식;이상호;황갑진;김종원;이진배
    • 한국수소및신에너지학회논문집
    • /
    • 제14권3호
    • /
    • pp.268-275
    • /
    • 2003
  • The water-splitting process by the metal oxides using solar heat is one of the hydrogen production method. The hydrogen production process using the metal oxides (NiFe2O4/NiAl2O4,CoFe2O4/CoAl2O4, CoMnNiFerrite, CoMnSnFerrite, CoMnZnFerrite, CoSnZnFerrite) was carried out by two steps. The first step was carried out by the CH4-reduction to increase activation of metal oxides at operation temperature. And then, it was carried out the water-splitting reaction using the water at operation temperature for the second step. Hydrogen was produced in this step. The production rates of H2 were 110, 160, 72, 29, 17, $21m{\ell}/hr{\cdot}g-_{Metal\;Oxide}$ for NiFe2O4/NiAl2O4, CoFe2O4/CoAl2O4, CoMnNiFerrite, CoMnSnFerrite, CoMnZnFerrite, CoSnZnFerrite respectively in the second step. CoFe2O4/CoAl2O4 had higher H2 production rate than the other metal oxides.

방크스소나무 및 산오리나무의 발아와 묘목의 생장에 미치는 Mn과 Al의 영향 (The Effect of Manganese and Aluminium on the Germination of the Seeds of Pinus banksiana and Alnus tinctoria)

  • 강상준
    • Journal of Plant Biology
    • /
    • 제10권3_4호
    • /
    • pp.4-9
    • /
    • 1967
  • The aim of present study is to elucidate the effects of manganese and aluminium ions on the germination and seedling growth of Pinus banksiana and Alnus tinctoria and to estimate the limiting level of those ions in the cultivated soils. The rate of germination of Pinus banksiana was increased under the relatively low concentration of Mn and Al (100 p.p.m), however, the germinating activity was not affected. High concentration over 110 p.p.m. of Mn and Al was related to the reduced percentage of germination and seedling growth of Pinus banksiana and Alnus tinctoria. Soils sampled from various parts of Korea contained Mn as much as high level that would be harmful for the seedling growth of Pinus banksiana and Alnus tinctoria.

  • PDF

Nanocrystalline $Y_3Al_5O_{12}$:Ce Phosphor-Based White Light-Emitting Diodes Embedded with CdS:Mn/ZnS Core/Shell Quantum Dots

  • Kim, Jong-Uk;Lee, Dong-Kyoon;Lee, Jong-Jin;Yang, Hee-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.588-590
    • /
    • 2008
  • Yellow-emitting $Y_3Al_5O_{12}$:Ce nanocrystalline phosphor and orange-emitting CdS:Mn/ZnS core/shell quantum dots were prepared by a modified polyol and a reverse micelle chemistry, respectively. To compensate a poor color rendering index of YAG:Ce nanocrystalline phosphor due to the lack of red spectral component, CdS:Mn/ZnS quantum dots were blended into YAG:Ce. Based on spectral evolutions in the blended systems, hybrid white light emitting diodes are fabricated and characterized.

  • PDF

TiAl계 XD45, XD47 금속간 화합물의 고온산화거동 (High Temperature Oxidation of TiAl-based XD 45 and XD47 Intermetallics)

  • 심웅식;이동복
    • 한국표면공학회지
    • /
    • 제35권4호
    • /
    • pp.193-198
    • /
    • 2002
  • Alloys of XD45 (Ti45A12Nb2Mn-0.8vol%TiB$_2$) and XD47 (Ti47A12Nb2Mn-0.8vol%TiB$_2$) were oxidized between 800 and $1000^{\circ}C$ in air, and their oxidation characteristics were studied. The oxide scales consisted primarily of an outer $TiO_2$ layer, an intermediate $Al_2$$O_3$-rich layer, and an inner mixed layer of ($TiO_2$+$Al_2$$O_3$). Nb tended to present at the lower part of the oxide scale, whereas Mn at the upper part of the oxide scale. The Pt marker tests indicated that the outer oxide layer grew primarily by the outward diffusion of Ti and Mn, and the inner mixed layer by the inward transport of oxygen.

Mechanism of Energy Transfer and Improvement Moist Stability of BaMg$Al_{10}O_{17}$:$Eu^{2+}$, $Mn^{2+}$ Phosphor

  • Liu, Ru-Shi;Ke, Wei-Chih
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.235-238
    • /
    • 2009
  • BaMg$Al_{10}O_{17}$ (BAM) co-doped with $Eu^{2+}$ and $Mn^{2+}$ was synthesized in a solid-state reaction and their luminescence properties were investigated as functions of the concentrations of the sensitizer and activator. BAM:$Eu^{2+}$ had a broad blue emission band at 450 nm and BAM:$Mn^{2+}$ exhibited green emission at 514 nm. The energy transfer from $Eu^{2+}$ to $Mn^{2+}$ was mainly of the resonance-type via an electric dipole-quadrupole interaction. Additionally, the addition of various fluxes such as $AlF_3$ and $BaF_2$ in the synthesis improves the moist and thermal stability. This is particularly important for the phosphor in white light emitting diodes (LEDs).

  • PDF

Synthesis and Optical Characteristics of Green-Emitting (Mg,Zn)$Al_2O_4:Mn^{2+}$ Phosphor for 3D- PDP Applications

  • Han, Bo-Yong;Yoo, Jae-Soo;Heo, Eun-Gi;Yoo, Young-Gil
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.272-275
    • /
    • 2009
  • A new green phosphor, ($Mg_{1-x-yZnx)$)$Al_2O_4:Mn^{2+}{_y}$ (0 x 0.6, 0.001 y 0.01), was synthesized by a flux-assisted solid reaction and its vacuum ultraviolet (VUV) excitation and emission characteristics were examined in this study. The chromaticity and peak intensity of the $(Mg_{0.79}Zn_{0.2})Al_2O_4:Mn^{2+}{_{0.01}}$ (x = 0.177, y = 0.745) phosphor were found to be more desirable than that of $Zn_2SiO_4:Mn^{2+}$ (x = 0.216, y = 0.72) phosphor as a green primary color.

  • PDF

Ni, Mn 첨가와 열처리에 따른 TiAl 미세 조직 변화 (The Variation of TiAl microstructure with Ni, Mn alloying and Heat Treatment)

  • 문종태;이승헌;한복수;신봉문;이용호
    • 열처리공학회지
    • /
    • 제10권3호
    • /
    • pp.181-187
    • /
    • 1997
  • TiAl intermetallic compound was candidated for the application to the high temperature materials such as a gas turbine exhaust valve in the automobile. However, this material dose not have ductility allowing to machinability to product. To improve the ductility, many researches conduct alloy design and heat treatment methods. We observed that the microstructure of TiAl varied with Ni, Mn elements as well as a heat treatment condition. In the case of Ni element addition, the TiAlNi intermetallic compound was precipitated at the grain boundary. When the heat treatment temperature increased from $1000^{\circ}C$ to $1300^{\circ}C$, the TiAlNi intermetallic compound was uniformly dispersed on the matrix. In the case of Mn element addition, the mixed duplex structure of ${\gamma}$-TiAl and lamellar(TiAl/$Ti_3Al$) was obtained with $1250^{\circ}C$ and $1300^{\circ}C$ heat treatment for 1 hour. When the heat treatment temperature increased from $1250^{\circ}C$ to $1300^{\circ}C$, the lamellar domain of the duplex structure was transformed near-lamellar structure.

  • PDF

A study of the inorganic element contents for the ginsengs of Keumsan, Chungnam

  • 송석환
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2008년도 춘계 학술대회
    • /
    • pp.74-75
    • /
    • 2008
  • This study is for geochemical relationships between ginsengs and soils from three representative soil types from Keumsan, shale, phyllite and granite. For these study, ginsengs, with the field and weathered soils were collected from the three regions, and are analysed for the major and trace elements. In the weathered soils(avg.), the granite and phyllite areas are high in the most of elements while the shale area is low. In the correlation coefficients, negative correlations are shown in the $Al_2O_3$-MgO pair while positive correlations, are shown in the Ba-Sr, Zr, Sr-Zr and Cs-Ge pairs. In the field soils(avg.), the granite and phyllite areas are, generally, high in the most of elements while the shale area is low. In the shale area, the major elements are high in the 4 year soils, but low in the 2 year soils. The LFS(Ba, Sr, Cs) and transitional elements are high in the 2 year soils, but low in the 4 year soils. The HFS(Y, Zr) is high in the 4 year soils. In the correlation coefficients, most of the elements from the 4 year show positive relationships. Positive correlations are shown in the $Al_2O_3$-CaO, MnO-MgO, V-Tl, and Ba-Sr pairs in all localities. In the ginseng contents, clear chemical differences with the ages are shown in the shale and granite ares, but not clear in the phyllite area. In the shale area Mn, Mg, Ba, Sr, and Y contents, increase with ages but decrease in Al, Cs, Be and Cd. In the correlation coefficients, degrees of the correlations for the major elements become low with the ages. Positive correlations are shown in the Al-Mn, Ti, Mn-Ti, Mg-Ca, Ca-K, Ba-Cs, Y and Cs-Y pairs. Comparisons with ginsengs of the same ages from the different areas suggest that generally, the 2 years in the shale and 3 and 4 years in the granite area are distinctive. Relative ratios(granite/ shale area) of the ginsengs are below 1 in the major elements except Mn in the 2 year ginsengs and above 1 in the other elements except Mg and Na in the 4 year. Relative ratios(granite/ phyllite area) of the ginsengs are high in the 3 year from the phyllite area. In the relative ratios(weathered/field soils) of the soils, numbers of the elements showing the ratios of above 1 increase from the shale, to phyllite and granite in the case of the major elements, but decrease in the case of the trace elements. These results suggest that major elements are high in the granite while trace elements are high in the shale area. In the relative ratios between field soils and ginsengs(field soils/ginseng), the shale area, regardless of the ages, show differences of several hundred times in the $Al_2O_3$, $TiO_2$, Y and Tl, of several ten times in the MnO, MgO and Ba and of several times in the CaO contents. These results suggest that ginseng contents are significantly different from the field soils in the $Al_2O_3$, $TiO_2$, Y and Tl, but similar in the CaO contents. The phyllite area, regardless of the ages, show differences of several hundred times in the $Al_2O_3$, $TiO_2$, Y, Tl and Be, of several ten times in the MnO, MgO, $Na_2O$ and Ba, and of several times to ten times in the CaO, $K_2O$ and Sr contents. These results suggest that ginseng contents are significantly different from those of the field soils in the $Al_2O_3$, $TiO_2$, Y, Tl and Be, but similar in the CaO, $K_2O$ and Sr contents. The granite area, regardless of the ages, show differences of several hundred times in the $Al_2O_3$, $TiO_2$, Tl and Be, of several ten times in the Ba, and of several times to ten times in the MgO and CaO contents. Of the other elements, differences of several times to ten times are shown in the MnO, $K_2O$ and Sr contents. These results suggest that ginseng contents are significantly different from those of the field soils in the $Al_2O_3$, $TiO_2$, Tl and Be, but similar in the $K_2O$ and Sr contents. Comparisons among the different ages from the same area suggest that, in the case of shale area, differences of several hundred times in the $Al_2O_3$ and $TiO_2$, of the several ten times in the MnO, MgO and Ba and several times in the CaO and $K_2O$ are shown in the 2 year ginsengs. Differences of several hundred times in the $Al_2O_3$, $TiO_2$, Cs, Y, Tl and Be, of above several ten times in the MnO, MgO, $K_2O$ and Ba, and of several times in the CaO and Sr are shown in the 3 year ginsengs. Differences of several hundred to thousand times in the $Al_2O_3$, of above several hundred times in the $TiO_2$, Cs and Y, and of several ten times in the MnO, MgO, $K_2O$ and Ba, and of several times in the $Na_2O$ are shown in the 4 year ginsengs. These relationships suggest that, regardless of the localities in the shale area, $Al_2O_3$ contents of the soils show big differences from those of the ginsengs. Regardless of the ages of ginsengs, comparisons with the overall average contents of each area show differences of several hundred times in the $Al_2O_3$, $TiO_2$, Cs and Tl and of several ten times in the MnO. These overall relationships suggest that the $Al_2O_3$, $TiO_2$, Cs and Tl contents of the soils are higher than those of the ginsengs, show big differences between two and low different contents are found in the MnO. In detail, differences of several hundred times in the Y, and ten times in the MgO and Sr, and of several times in the CaO, $Na_2O$, $K_2O$ in the case of shale area, are shown. These results suggest that the soils are higher than the ginsengs in the Y and significantly differences in Y, and moderately differences in the MgO and Sr, and low differences in the CaO, $Na_2O$ and $K_2O$ are shown between soils and ginsengs.

  • PDF

기계적 합금화법과 방전 플라즈마 소결법으로 제조된 Al-25Ti-8Mn 금속간 화합물의 산화 거동 (Oxidation Behavior of Al-25Ti-8Mn Intermetallic Compound Fabricated by Mechanical Alloying and Spark Plasma Sintering)

  • 최재웅;김기홍;황길호;홍석준;강성군
    • 한국재료학회지
    • /
    • 제15권7호
    • /
    • pp.439-443
    • /
    • 2005
  • The oxidation behavior and the thermal stability of nanocrystalline Al-25Ti-8Mn intermetallic compound were investigated. $Al_3Ti$ intermetallic compound, which has a potential for high temperature structural material, was fabricated by mechanical alloying(MA) with $8at.\%$ Mn to enhance the thermal stability and ductility. And Al-25Ti-8Mn intermetallic compound was sintered by spark plasma sintering(SPS) at $700^{\circ}C$. After sintering process, cubic $Ll_2$ structure was maintained without phase transformation and the grain size was about 50nm. To investigate the oxidation behavior of the specimens, thermal gravimetric analysis(TGA) was performed at 700, 800, 900, and $1000^{\circ}C$ for 24 h in $O_2$. As the temperature increased from $700^{\circ}C\;to\;900^{\circ}C$ the weight gain of specimens increased. However at $1000^{\circ}C$, unlike the oxidation behavior of $700^{\circ}C\;to\;900^{\circ}C$, the weight gain of specimen decreased drastically and the transition from linear rate region to parabolic rate region occurred rapidly due to the dense $\alpha-Al_2O_3$.

304 스테인레스강에서 첨가원소에 따른 미세조직 및 절삭성 연구 (Microstructure and Machinability with Alloying Elements in the 304 Stainless Steel)

  • 강석순;김현철;이재현;조종래;정윤교;장철호;황호순
    • 한국재료학회지
    • /
    • 제16권9호
    • /
    • pp.584-591
    • /
    • 2006
  • To enhance the machinability of the austenite stainless alloys, Mn and S were added to form MnS in the austenite matrix. Recently, Ca is also added to increase machinability. The alloying elements, such as C, Mn, S, Ca, and Al, are known to affect machinability, but those roles are not well understood. In this study, the ingots, controlled of alloying elements, C, Mn, S, Ca, Al, were prepared in the 304 stainless steel. The relationship between microstructure and machinability was compared to understand the role of alloying elements. It was proved that Mn and S enhanced machinability but C reduced it by analyzing cutting force on machining in the lathe. The alloying elements, Ca and Al, made a complex oxide compound of Mn-S-Ca-Al-Si-O, which results in increasing tool life. The ferrite volume fraction was changed with alloying elements and the effect of the ferrite fraction on machining was also discussed.