• Title/Summary/Keyword: Mn-peroxidase

Search Result 140, Processing Time 0.249 seconds

Production of Lignin Degrading Enzymes and Decolorization of Various Dye Compounds by Wood-Rot Fungi (목재 부후균의 리그닌 분해효소 활성과 염료 화합물의 탈색)

  • Jang, Tae-Won;Jun, Sang-Cheol;Ahn, Tae-Seok;Kim, Kyu-Joong
    • Korean Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.34-39
    • /
    • 2006
  • Wood-rot fungi produce extracellular lignin-degrading enzymes, the best known of which are lignin peroxidase, Mn-peroxidase and laccase. In this experiment, some of them produced all of three enzymes. Many other wood-rot fungi produced one or two of those enzymes with various combinations. In this experiment, we tried to clarify the relationship between the pattern of enzyme production and degradative activity of several dye compounds. From the 36 strains of 23 species of wood-rot fungi, Mn-peroxidase activity was found in 30 strains of the fungi tested, whereas the activity of lignin peroxidase and laccase was detected in 11 strains and 12 strains of species, repectively, in Kirks low nitrogen media. In relation to the activity of lignin degrading enzymes and degradation of dye compounds, the white-rot fungi with three kinds of enzymes tested showed the best dye decolorizers. The fungi with Mn-peroxidase activity only decolorized poly R-478 and remazol brilliant blue R dye in proportion to the enzyme activity, while methylene blue, bromophenol blue and congo red dye were degraded in regardless of enzyme activity. Those dyes were degraded in relation to the growth rate of mycelium. Brown-rot fungi did not degrade all the dye compounds except bromophenol blue, in spite of moderate growth rate.

Screening and production of lignocellulolytic enzymes secreted by the edible basidiomycete Pleurotus ostreatus (느타리로부터 리그닌-셀룰로오스분해효소 생산 균주 선발 및 효소 생산)

  • Ha, Hyo-Cheol
    • Journal of Mushroom
    • /
    • v.10 no.2
    • /
    • pp.74-82
    • /
    • 2012
  • Sixty strains of Pleurotus ostreatus, white-rot fungi, were screened for production ability of their lignocellulolytic enzymes to selectively wood degradation. That results were shown that all of screened strains were produced lignocellulolytic enzymes on 2nd screening liquid culture medium. However, cellulase activity of selected six strains of P. ostreatus was low in avicel-yeast-peptone liquid culture medium. In the case of xylan degrading enzyme, No. 6 and No. 38 strains produced a xylanase(above 1.0U/ml) and a 1,4-${\beta}$-xylosidase (above 0.15 U/ml). Examination of the ligninolytic enzyme profiles of selected thirteen strains of the P. ostreatus, in the presence of Remazol Brilliant Blue R(RBBR), were observed that laccase(Lac) activity were earlier reached maximum level(0.8-2.0 U/ml) and then Mn-dependent peroxidase (MnP) were reached maximum level(0.5-1.5 U/ml) in glucose-yeast-peptone(GYP) medium. On the other hand, activity of lignin peroxidase(LiP) was not detected in this medium. I selected the No. 42 strain of P. ostreatus produced high levels of Mn-dependent peroxidase and laccase based on the screening method.

Correlative Production of Mn-Peroxidase and Glucose Oxidase Depending on the Culture Condition of Schizopora paradoxa (좀구멍버섯균의 배양조건에 따른 Mn-Peroxidase와 Glucose Oxidase의 생성조절)

  • Lee, Sang-Yoon;Shin, Hyeon-Dong;Kim, Kyu-Joong
    • The Korean Journal of Mycology
    • /
    • v.22 no.4
    • /
    • pp.325-331
    • /
    • 1994
  • White-rot fungus, Schizopora paradoxa did not produce Mn-peroxidase and glucose oxidase without manganese. But, in high concentration of manganese (40 ppm), the activities of both enzymes were higher than those in basal concentration of manganese (11.15 ppm). Unlike the activities of the enzymes, mycelial mass was the same level as the control culture (11.15 ppm manganese) through out the culture period, depending on the concentration of manganese. The same experiments were carried out for the effect of copper and veratryl alcohol added to the culture. The results were not consistent dependent on the concentration of copper and veratryl alcohol, respectively. The involvement of cAMP in the correlative production of MNP and GOX was investigated. In this study, addition of atropine to the culture resulted in a concomitant inhibition of production of MNP and GOX, depending on the concentration of inhibitor added.

  • PDF

Fungal Growth and Manganese Peroxidase Production in a Deep Tray Solid-State Bioreactor, and In Vitro Decolorization of Poly R-478 by MnP

  • Zhao, Xinshan;Huang, Xianjun;Yao, Juntao;Zhou, Yue;Jia, Rong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.803-813
    • /
    • 2015
  • The growth of Irpex lacteus F17 and manganese peroxidase (MnP) production in a selfdesigned tray bioreactor, operating in solid-state conditions at a laboratory scale, were studied. The bioreactor was divided into three layers by three perforated trays. Agroindustrial residues were used both as the carrier of bound mycelia and as a nutrient medium for the growth of I. lacteus F17. The maximum biomass production in the bioreactor was detected at 60 h of fermentation, which was consistent with the CO2 releasing rate by the fungus. During the stationary phase of fungal growth, the maximum MnP activity was observed, reaching 950 U/l at 84 h. Scanning electron microscopy images clearly showed the growth situation of mycelia on the support matrix. Furthermore, the MnP produced by I. lacteus F17 in the bioreactor was isolated and purified, and the internal peptide sequences were also identified with mass spectrometry. The optimal activity of the enzyme was detected at pH 7 and 25℃, with a long half-life time of 9 days. In addition, the MnP exhibited significant stability within a broad pH range of 4-7 and at temperature up to 55℃. Besides this, the MnP showed the ability to decolorize the polymeric model dye Poly R-478 in vitro.

Study of Functional Verification to Abiotic Stress through Antioxidant Gene Transformation of Pyropia yezoensis (Bangiales, Rhodophyta) APX and MnSOD in Chlamydomonas

  • Lee, Hak-Jyung;Yang, Ho yeon;Choi, Jong-il
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1217-1224
    • /
    • 2018
  • Seaweeds produce antioxidants to counteract environmental stresses, and these antioxidant genes are regarded as important defense strategies for marine algae. In this study, the expression of Pyropia yezoensis (Bangiales, Rhodophyta) ascorbate peroxidase (PyAPX) and manganese-superoxide dismutase (PyMnSOD) was examined by qRT-PCR in P. yezoensis blades under abiotic stress conditions. Furthermore, the functional relevance of these genes was explored by overexpressing them in Chlamydomonas. A comparison of the different expression levels of PyAPX and PyMnSOD after exposure to each stress revealed that both genes were induced by high salt and UVB exposure, being increased approximately 3-fold after 12 h. The expression of the PyAPX and PyMnSOD genes also increased following exposure to $H_2O_2$. When these two genes were overexpressed in Chlamydomonas, the cells had a higher growth rate than control cells under conditions of hydrogen peroxide-induced oxidative stress, increased salinity, and UV exposure. These data suggest that Chlamydomonas is a suitable model for studying the function of stress genes, and that PyAPX and PyMnSOD genes are involved in the adaptation and defense against stresses that alter metabolism.

Responses of Transgenic Tobacco Plants Overexpressing Superoxide Dismutase and Ascorbate Peroxidase in Chloroplasts to Water Stress (Superoxide Dismutase와 Ascorbate Peroxidase를 엽록체에 과발현하는 형질전환 담배의 수분스트레스에 대한 반응)

  • 최선미;권석윤;곽상수;박용목
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.79-84
    • /
    • 2001
  • To assess resistance of transgenic tobacco plants which overexpress superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts to water stress, changes in leaf water potential, turgor potential, stomatal conductance and transpiration rate were measured. Leaf water potential in all plants remained high up to day 4 after withholding water but thereafter decreased markedly. In spite of a remarkable decrease in leaf water potential, some of transgenic plants maintained higher turgor potential compared with control plant on day 12. In particular, the transgenic plant expressing MnSOD showed an outstanding maintenance in turgor pressure by osmotic adjustment throughout the experiment, resulting in high stomatal conductance and transpiration rate. However, among transgenic plants, osmotic potential was reduced more effectively in multiple transformants such as the double transformant expressing both MnSOD and APX, and the triple transformant expressing CuznSOD, MnSOD and APX than single transformants. Consequently, further research is needed to get general agreement on the tolerance of transgenic plants to water stress at different growth stages for each transgenic plant.

  • PDF

Purification and Some Properties of Peroxidase from the Fruit Malus sieboldii (Regel) Rehder (아그배 Peroxidase의 정제 및 특성)

  • Yang, Hee-Cheon;Son, Hee-Suk;Shim, Kyu-Kwang;Oh, Chan-Ho;Choi, Dong-Seong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.1
    • /
    • pp.84-90
    • /
    • 1992
  • Peroxidase in the fruit of Malus sieboldii (Regel) Rehder was partially purified by DEAE-cellulose column chromatography and Ultro-AcA 54 gel filtration. The optimum pH of peroxidase was 4.5 and optimum temperature was $80^{\circ}C$. The enzyme was stable at pH 5.0 and below $30^{\circ}C$, and inactivated by heat treatment at $80^{\circ}C$ for 15min. In the presence of 30mM $H_{2}O_2$ Km value on o-phenylenediamine as substrate was 1.65mM, and in the presence of 10mM o-phenylenediamine Km value on $H_{2}O_2$ was 7.97mM. L-Ascorbic acid and sodium L-ascorbate greatly inhibited the enzyme activity and among several metal ions $Mn^{2+}$ only increased the activity at 5mM.

  • PDF

Expression of a Manganese Peroxidase Gene (mnp5) from White rot fungus Phanerochaete chrysosporium in the Pichia pastoris (백색부후균 Phanerochaete chrysosporium에서 유래한 Manganese Peroxidase Gene(mnp5)의 Pichia pastoris에서의 이종발현)

  • Lee, Jae-Won;Yang, In;Igarashi, Kiyohiko;Samejima, Masahiro;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.4 s.132
    • /
    • pp.45-52
    • /
    • 2005
  • The manganese peroxidase (mnp5) from white-rot fungus Phanerochaete chrysosporium has been heterologously expressed in the methylotrophic yeast Pichia pastoris. The majority of the rMnP5 (recombinant MnP5) produced by P. pastoris exhibited an approximate molecular mass 45 kDa considerably larger than that of the predicting mnp5 due to two glycosylation sites of mnp5. After site direct mutation treatment, the effect of N-linked hyperglycosylation was examined by enzyme activity. Analysis by sodium dodesyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Coomassie Brilliant Blue (CBB) staining revealed a major protein band with a molecular mass of 37 kDa. Enzyme activity of M-rMnP5 (mutant recombinant MnP5) was similar to that of rMnP5, indicating that hyperglycosylation did not affect the active site. In this work, active mnp5 was successfully expressed in P. pastoris, suggesting that P. pastoris has potential capability of producing active heme-containing proteins.

Decolorization of Azo, Triphenylmethane and Heterocyclic Dyes by Irpex zonatus BN2 (송곳니구름버섯(Irpex zonatus) BN2에 의한 아조계, 트리페닐메탄계 및 헤테로싸이클릭계 염료의 탈색)

  • Yoon, Kyung-Ha;Choi, Yang-Soon
    • The Korean Journal of Mycology
    • /
    • v.26 no.1 s.84
    • /
    • pp.8-15
    • /
    • 1998
  • The present research was undertaken to investigate the activity of ligninolytic enzymes and the decolorization capability of some dyes with Irpex zonatus BN2, isolated from nature and identified. For the assay of enzyme activities, the isolate did not produce lignin peroxidase (LiP) and veratryl alcohol oxidase (VAO), but laccase and manganese dependent peroxidase (MnP). While the activity for MnP was low $(61.6\;nmol/mg{\cdot}protein)$, its laccase activity was very high $(1185.9\;nmol/mg{\cdot}protein)$. Moreover, laccase had appeared earlier than MnP. When the isolate was incubated with each dye for 10 days, the decolorization rates of azo dyes, such as orange II, orange G, tropaeolin O and congo red were 98.0%, 97.4%, 99.0% and 95.3%, respectively. In case of heterocyclic dyes, eosin Y, toludine blue, methyl blue and azur B were 97.4 %, 98.7%, 99.9% and 94.0% respectively. Finally the results of triphenylmethane dye such as basic fuchsin, malachite green and crystal violet were 98.5%, 95.7% and 99.4%, respectively. The results suggest that laccase of Irpex zonatus BN2 should be played an important role in the decolorization of the dyes.

  • PDF

Production of manganese peroxidase from Pleurotus ostreatus using a rotary draft tube bioreactor (RTB) and characterization of its activity (회전식 통풍관 생물반응기 사용에 따른 느타리균의 manganese peroxidase 생산 및 특성)

  • Ha, Hyo-Cheol
    • Journal of Mushroom
    • /
    • v.19 no.4
    • /
    • pp.316-321
    • /
    • 2021
  • Ligninolytic enzymes were produced by Pleurotus ostreatus No.42, cultivated in a new kind of bioreactor that has a rotating draft tube with a helical ribbon. Maximum laccase (Lac) production (about 8,200 U/bioreactor) was reached after 3 days of incubation, then production decreased. Production of manganese peroxidase (MnP) in this fermenter reached a maximum level of about 8,400 U/bioreactor after 6 days of incubation. Lignin peroxidase (LiP) was not detected under these growth conditions. These results indicate that the rotary draft tube bioreactor (RTB) is compatible with large scale production of ligninolytic enzymes. MnP produced under these fermentation conditions was purified via a multistep process that included chromatography on Sepharose CL-6B, prep grade Superdex 75, and Mono-Q. This major isoenzyme was confirmed to have an apparent molecular weight of 36,400 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and its isoelectric point (IEF) was determined to be 3.95. N-terminal sequencing of the major isoenzyme from this fermentation was identical to that reported for an MnP3 isoenzyme isolated under different cultivation conditions, including stationary and shaking culture.