• Title/Summary/Keyword: Mn-ferrite

Search Result 324, Processing Time 0.027 seconds

Effect of Austempering Factors and Mn Addition on Mechanical Properties of ADI (오스템퍼링 조건과 Mn의 양이 ADI의 기계적 성질에 미치는 영향)

  • Suh, Kwan-Soo;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.12 no.5
    • /
    • pp.390-396
    • /
    • 1992
  • In this study, we investigated effect of austempering factors and Mn addition on mechanical properties of ADI with ferrite-bainite matrix by pearlite-bainite transformation treatment. Ductile cast iron specimens containing various of Mn were austenitized at 875$^{\circ}C$ for 350 sec or 925$^{\circ}C$ for 160 sec and then austempered at 300$^{\circ}C$ or 400$^{\circ}C$ for the various periods(5 to 30 min). Manganese increased pearlite volume fraction in as cast ductile cast iron. The obtained results are as follows ; 1) In austenitizing, hardness of sepecimens austenitized at 875$^{\circ}C$ for 350 sec was higher than that of 925$^{\circ}C$ for 160 sec. 2) In effect of austempering temperature, tensile strength and handness of specimens austempered at 300$^{\circ}C$ was higher than that of 400$^{\circ}C$. However, elongation had reverse tendency. 3) Increasing austempering time decreased hardness due to the increment of bainite and retained austenite fractions. However, toughness are increased.

  • PDF

Property of Mn-Zn Ferrite for Planar Core (평면코어용 Mn-Zn 페라이트의 물성)

  • Kim, Jong-Ryung;Oh, Young-Woo;Lee, Tae-Won;Kim, Hyun-Sik;Lee, Hae-Yon;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.96-100
    • /
    • 2003
  • 평면형 자심재료용으로 응용하기 위한 Mn-Zn 페라이트에서 저손실 조성의 전자기적 특성과 분위기 조건에 따른 특성변화를 관찰하였다. $Fe_{2}O_{3}$ : MnO : ZnO 의 물비가 53 : 36 : 11 일 때, 가장 우수한 특성을 나타내었으며, $SiO_{2}$와 CaO는 입계 저항층 형성을 통한 손실은 감소시키고, 이로 인해 성능지수는 증가하여 100kHz ~ 200kHz 범위에서 최대값을 나타내어 전자기적 효율이 극대화되었다. 산소분압의 제어는 승온과정부터 산소분압을 제어시켜주어야만 Zn-loss 현상의 증가와 $Fe^{2+}$이온 농도의 감소 및 $Fe^{2+}-Fe^{3+}$ 이온간의 호핑(hoping)현상 등에 의한 손실을 최소화 할 수 있으며, 높은 투자율을 얻을 수 있었다. 그리고 소결 또는 냉각 중 평형 산소분압이 유지되지 못하면 다량의 결함이 출현하게 되고, 특히 $600^{\circ}C$이하에서 스피넬 상의 분해-산화반응이 일어나면서 미세구조 상에 결함으로 남게 되어 전자기적 특성이 저하되었다.

  • PDF

Effects of Microstructures on the Toughness of High Heat Input EG Welded Joint of EH36-TM Steel (EH36-TM강의 대입열 EGW 용접부 저온 인성에 미치는 미세 조직의 영향)

  • Choi, Woo-Hyuk;Cho, Sung-Kyu;Choi, Won-Kyu;Ko, Sang-Gi;Han, Jong-Man
    • Journal of Welding and Joining
    • /
    • v.30 no.1
    • /
    • pp.64-71
    • /
    • 2012
  • The characteristics of high heat input (342kJ/cm) EG (Electro Gas Arc) welded joint of EH36-TM steel has been investigated. The weld metal microstructure consisted of fine acicular ferrite (AF), a little volume of polygonal ferrite (PF) and grain boundary ferrite (GBF). Charpy impact test results of the weld metal and heat affected zone (HAZ) met the requirement of classification rule (Min. 34J at $-20^{\circ}C$). In order to evaluate the relationship between the impact toughness property and the grain size of HAZ, the austenite grain size of HAZ was measured. The prior austenite grain size in Fusion line (F.L+0.1 mm) was about $350{\mu}m$. The grain size in F.L+1.5 mm was measured to be less than $30{\mu}m$ and this region was identified as being included in FGHAZ(Fine Grain HAZ). It is seen that as the austenite grain size decreases, the size of GBF, FSP (Ferrite Side Plate) become smaller and the impact toughness of HAZ increases. Therefore, the CGHAZ was considered to be area up to 1.3mm away from the fusion line. Results of TEM replica analysis for a welded joint implied that very small size ($0.8\sim1.2{\mu}m$) oxygen inclusions played a role of forming fine acicular ferrite in the weld metal. A large amount of (Ti, Mn, Al)xOy oxygen inclusions dispersed, and oxides density was measured to be 4,600-5,300 (ea/mm2). During the welding thermal cycle, the area near a fusion line was reheated to temperature exceeding $1400^{\circ}C$. However, the nitrides and carbides were not completely dissolved near the fusion line because of rapid heating and cooling rate. Instead, they might grow during the cooling process. TiC precipitates of about 50 ~ 100nm size dispersed near the fusion line.

Effects of Magneto-Dielectric Ceramics for Small Antenna Application

  • Kim, Jae-Sik;Lee, Young-Hie;Lee, Byungje;Lee, Jong-Chul;Choi, Jin Joo;Kim, Jin Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.273-279
    • /
    • 2014
  • Hexagonal Ba-ferrites are widely suggested as materials for small antennas. In this paper, the sintering behavior and magneto-electric properties of $Ba_3Co_{2-2x}Mn_{2x}Fe_{24}O_{41}$ ($0.1{\leq}x{\leq}0.5$) ceramics were investigated for small antenna application. All samples of $Ba_3Co_{2-2x}Mn_{2x}Fe_{24}O_{41}$ ceramics were prepared by the solid-state reaction method and sintered at $1250^{\circ}C$. From the XRD patterns of the sintered $Ba_3Co_{2-2x}Mn_{2x}Fe_{24}O_{41}$ceramics, the Z-type phases were found to be the main phases. The real part of permittivity and permeability of the $Ba_3Co_{2-2x}Mn_{2x}Fe_{24}O_{41}$ceramics decreased with frequency. On the other hand, loss tangents of permittivity and permeability tended to behave opposite to real part of permittivity and permeability. The real part of permeability was affected by Mn additions. The real part of permittivity, the loss tangent of permittivity and the real part of permeability, the loss tangent of permeability of $Ba_3Co_{0.2}Mn_{0.8}Fe_{24}O_{41}$ ceramics were 19.774, 0.176 and 15.183, 0.073, respectively, at 510 MHz. In order to investigate the effect of magneto-dielectric ceramics on antenna, PIFA (Planar Inverted F Antenna) was simulated with CST (Computer Simulation Technology). The operating frequency of antenna was decreased without considerable change of bandwidth by using the $Ba_3Co_{0.2}Mn_{0.8}Fe_{24}O_{41}$ ceramics as the carrier.

High Purity Ferric Oxide : Origin of Impurities and IROX-NKK Purification Process

  • Maeda, T.
    • Resources Recycling
    • /
    • v.11 no.5
    • /
    • pp.21-23
    • /
    • 2002
  • A new process based on the co-precipitation method was developed fer removing harmful impurities during Mn-Zn ferrite production such as $SiO_2$ and P from waste pickle liquor. By this process a final result of less than 100 ppm of $SiO_2$ and less than 10 ppm of P content in the ferric oxide is easily attained. Though Ca cannot be removed by this process, water rinsing of the ferric oxide is effective fer reducing Ca content to less than 100 pm. For further purification, the origins of each impurity must be investigated and then taken away.

The Three-Level PLA Design Using EXANOR (Mn-Zm-Fe Ferrite에서 하소 및 소결조건이 투자율과손실에 미치는 영향)

  • 조동섭;이종원;황희영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.1
    • /
    • pp.13-23
    • /
    • 1983
  • This paper deals with the three-level PLA constructed by EXCLUSIVE-OR, AND, and OR. (abbreviated as EXANOR). Most PLA circuits have constraints on minimum chip area and minimal input lines. Thus, the reduction of PLA chip area is an important factor in design of logic circuits. In this paper, newly constructed architecture of PLA is proposed and then, its reduction effect is proved theoretically and some of selected examples are illustrated for designing three-level PLA circuits.

  • PDF

Effect of Intercritical Annealing on Microstructure and Mechanical Properties of Fe-9Mn-0.2C-3Al-0.5Si Medium Manganese Steels Containing Cu and Ni (구리와 니켈이 포함된 Fe-9Mn-0.2C-3Al-0.5Si 중망간강의 미세조직과 기계적 특성에 미치는 2상역 어닐링의 영향)

  • Lee, Seung-Wan;Sin, Seung-Hyuk;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.30 no.1
    • /
    • pp.44-49
    • /
    • 2020
  • The effect of intercritical annealing temperature on the microstructure and mechanical properties of Fe-9Mn-0.2C-3Al-0.5Si medium manganese steels containing Cu and Ni is investigated in this study. Six kinds of medium manganese steels are fabricated by varying the chemical composition and intercritical annealing temperature. Hardness and tensile tests are performed to examine the correlation of microstructure and mechanical properties for the intercritical annealed medium manganese steels containing Cu and Ni. The microstructures of all the steels are composed mostly of lath ferrite, reverted austenite and cementite, regardless of annealing temperature. The room-temperature tensile test results show that the yield and tensile strengths decrease with increasing intercritical annealing temperature due to higher volume fraction and larger thickness of reverted austenite. On the other hand, total and uniform elongations, and strain hardening exponent increase due to higher dislocation density because transformation-induced plasticity is promoted with increasing annealing temperature by reduction in reverted austenite stability.

Effects of Bainitic Transformation Temperature and Stress State on the Formability of C-Mn-Si TRIP Steels (C-Mn-Si계 변태유기소성강의 성형성에 미치는 베이나이트 변태온도 및 응력상태의 영향)

  • Jun H. S.;Oh J. H.;Park C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.156-160
    • /
    • 2001
  • The effects of TRansformation Induced Plasticity(TRIP) phenomena on the plastic deformation of 0.2C-1.5Si-1.5Mn multiphase steels have been investigated at various heat treatment and stress conditions. In order to estimate the formability, the hole expansion(HE) tests and the tensile tests were carried out. The formability evaluated from the uni-axial tensile tests was quite different from the formability measured from multi-axial HE-tests. Consequently, the formability in the multi-axial stress state decreased due to the extinction of the retained austenite relatively at earlier deformation stage and the production of irregular α' martensite. However, the defects of TRIP-steels were initiated exactly at the boundary between transformed martensite and ferrite matrix regardless of stress state. In addition, new experimental formula is proposed in order to predict the multi-axial formability of the TRIP steels from the results of uniaxial tensile test.

  • PDF