• Title/Summary/Keyword: Mn-SOD

Search Result 212, Processing Time 0.024 seconds

Expression of Pea Superoxide Dismutase Gene in Transgenic Cucumber (Cucumis sativus L.) Plants (형질전환 오이(Cucumis sativus L.) 식물체에서 완두 Superoxide Dismutase 유전자의 발현)

  • 김재훈;오승용;이행순;조만현;이은모;우인식;곽상수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.3
    • /
    • pp.201-206
    • /
    • 1998
  • To develop the fruits of cucumber (Cucumis sativus L.) producing high yields of superoxide dismutase (SOD), the MnSOD cDNA from pea (Pisum sativum) under the control of the cauliflower mosaic virus 35S promoter was introduced into cucumber using Agrobacterium tumefaciens (strain LBA 4404)-mediated transformation. The kanamycin-resistant shoots were selected on the selection medium containing MS basal salt, 1.0 mg/L zeatin, 0.1 mg/L IAA, 300 mg/L claforan, and 100 mg/L kanamycin. After 6 weeks of culture on the selection medium, the shoots were transferred to MS medium containing 0.2 mg/L NAA to induce roots. PCR analysis using the primers for neomycin phosphotransferase (NPTII) gene revealed that three plantlets were transformed. The fruits of one transgenic plant had approximately 3.2-fold higher SOD activity than those of non-transgenic plants. MnSOD isoenzyme band was strongly detected on native gel in fruits of transgenic plants.

  • PDF

Mechanism for Antioxidant Activity of Nardostachys chinensis root Extract

  • Heo, Jee-In;Kim, Jeong-Hyeon;Lee, Jeong-Min;Kim, Sung Chan;Park, Jae-Bong;Kim, Jaebong;Lee, Jae-Yong
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.1
    • /
    • pp.17-22
    • /
    • 2014
  • Nardostachys chinensis (N. chinensis) has been used in traditional medicine as a sedative and analgesic. It has been reported that N. chinensis extract has an antioxidant activity. However, the mechanism has not been elucidated. In this study, we showed that FOXO3a was activated by N. chinensis extract. FOXO3a is a transcriptional factor that involved in cell cycle arrest, DNA repair, apoptosis, and detoxification of reactive oxygen spices (ROS). Protein level of FOXO3a was increased by N. chinensis extract whereas phospho-FOXO3a (Thr 32) was not changed. Promoter activities of target genes of FOXO3a such as MnSOD, p27, and GADD45 were increased by N. chinensis extract. Among target genes, protein level of MnSOD was increased by N. chinensis extract, and this leads to removal of ROS level in human embryonic fibroblast (HEF) cells. These results suggested that N. chinensis extract has an antioxidant activity by upregulation of MnSOD through FOXO3a activation.

Responses of Transgenic Tobacco Plants Overexpressing Superoxide Dismutase and Ascorbate Peroxidase in Chloroplasts to Water Stress (Superoxide Dismutase와 Ascorbate Peroxidase를 엽록체에 과발현하는 형질전환 담배의 수분스트레스에 대한 반응)

  • 최선미;권석윤;곽상수;박용목
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.79-84
    • /
    • 2001
  • To assess resistance of transgenic tobacco plants which overexpress superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts to water stress, changes in leaf water potential, turgor potential, stomatal conductance and transpiration rate were measured. Leaf water potential in all plants remained high up to day 4 after withholding water but thereafter decreased markedly. In spite of a remarkable decrease in leaf water potential, some of transgenic plants maintained higher turgor potential compared with control plant on day 12. In particular, the transgenic plant expressing MnSOD showed an outstanding maintenance in turgor pressure by osmotic adjustment throughout the experiment, resulting in high stomatal conductance and transpiration rate. However, among transgenic plants, osmotic potential was reduced more effectively in multiple transformants such as the double transformant expressing both MnSOD and APX, and the triple transformant expressing CuznSOD, MnSOD and APX than single transformants. Consequently, further research is needed to get general agreement on the tolerance of transgenic plants to water stress at different growth stages for each transgenic plant.

  • PDF

Effect of Treadmill Exercise Training on the Expression of PGC-1α, GLUT-1, Tfam Proteins and Antioxydent Ezymes in Brain of STZ-Induced Diabetic Rats (트레드밀 지구성 운동이 streptozotocin으로 유발된 당뇨 흰쥐의 뇌에서 PGC-1α, GLUT-1, Tfam 단백질 및 항산화 효소(Cu, Zn-SOD, Mn-SOD)의 발현량에 미치는 영향)

  • Park, Noh-Hwan;Lee, Jin;Jung, Kook-Hyun;Choi, Bong-Am;Jang, Hyung-Chae;Lee, Suk-In;Lee, Dong-Soo;Cho, Joon-Yong
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.435-443
    • /
    • 2011
  • The purpose of this study is to identify the effects of exercise training [ET, 10~18 m/min (speed), 20~30 min (exercise duration)/a day for 5 day/wk, 6 wk) on PGC-$1{\alpha}$, GLUT-1, Tfam, Cu,Zn-SOD and Mn-SOD proteins in brain of STZ-induced diabetic rats. The male Sprague-Dawley (SD) rats were single-injected intraperitoneally with 50mg/kg of streptozotocin (STZ) to produce STZ-induced diabetic rats. Rats were divided into 3 experimental groups with 8 rats in each group, as follows: (1) non-STZ group (n=8), (2) STZ-CON group (n=8), (3) STZ-EXE group (n=8). The results of this study suggest that i) serum glucose level was significantly reduced in STZ-EXE group compared with STZ-CON group (p<0.05), ii) PGC-$1{\alpha}$ (p<0.001), mtPGC-$1{\alpha}$ (p<0.001), GLUT-1 (p<0.001), and mtTfam (p<0.001) proteins in brain of STZ-induced diabetic rats were significantly increased in STZ-EXE group compared with STZ-CON group, iii) Cu,Zn-SOD (p<0.001) and Mn-SOD (p<0.01) proteins in the STZ-induced diabetic rats were significantly increased in STZ-EXE group compared with STZ-CON group. In conclusion, the findings of the present study reveal that treadmill exercise training increases brain GLUT-1 protein level possibly through up-regulation of PGC-$1{\alpha}$ and Tfam proteins which represent key regulatory components of stimulation of brain mitochondrial biogenesis. In addition, treadmill exercise training may prevent oxidative stress by up-regulation of Cu,Zn-SOD and Mn-SOD proteins in the STZ-induced diabetic rats.

Isolation and Characterization of the sod2$^{2+}$ Gene Encoding a Putative Mitochondrial Manganese Superoxide Dismutase in Schizosaccharomyces bombe

  • Jeong, Jae-Hoon;Kwon, Eun-Soo;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.37-41
    • /
    • 2001
  • The fission yeast Schizosaccharomyces pombe contains two distinct superoxide dismutase (SOD) activities, one in the cytosol encoded by the $sod2^{+}$ gene and the other in mitochondria. The $sod2^{+}$ gene encoding putative mitochondrial manganese superoxide dismutase (MnSOD) was isolated from the S. pombe genomic library using a PCR fragment as the probe. The nucleotide sequence of the $sod2^{+}$ gene and its flanking region (4051 bp HindIII fragment) was determined. An intron of 123 nt in size was predicted and confirmed by sequencing the cDNA following reverse transcription PCR. The predicted Sod2p consists of 218 amino acid residues with a molecular mass of 24,346 Da. The deduced amino acid sequence showed a high degree of homology with other MnSODs, especially in the metal binding residues at the active site and their relative positions. The transcriptional start site was mapped by primer extension at 231 at upstream from the ATG codon. A putative TATA box(TATAAAA) was located 58 nt upstream from the transcriptional start site and putative polyadenylation sites were located at 1000, 1062, and 1074 nt downstream from the ATG start codon.

  • PDF

Effects of ischemic preconditioning, KATP channel on the SOD activation and apoptosis in ischemic reperfused skeletal muscle of rat (허혈양상화와 KATP 통로가 허혈후 재관류된 흰쥐의 골격근육에서 SOD 활성 및 apoptosis에 미치는 영향)

  • Abn, Dong-choon;Paik, Doo-jin;Yang, Hong-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.5
    • /
    • pp.878-895
    • /
    • 1999
  • Ischemic preconditioing (IPC), i.e., a preliminary brief episode of ischemia and reperfusion, has been shown to reduce the cell damage induced by long ischemia and reperfusion. Superoxide radical which is produced during reperfusion after ischemia was recognized as a factor of the ischemic injury and it is dismutated into $H_2O_2$ and $O_2$ by two types of intracellular superoxide dismutase (SOD), Cu,Zn-SOD in cytoplasm and Mn-SOD in mitochondria. Recently oxygen free radicals are suggested to induce the apoptosis, however mechanism of the reduced apoptosis by ischemic preconditioing was unknown, while many studies performed in mammalian heart indicated that ATP-sensitive $K^+$ ($K_{APT}$) channel activation related with the protective effects. The aim of present study is to investigate 1) whether IP upregulate the Cu,Zn-SOD and Mn-SOD activities, and 2) whether ischemic preconditioning decreases apoptosis via $K_{APT}$ channel activation in timely reperfused skeletal muscle after long ishemia. The experimental animals, Sprague-Dawley rats weighing 250~300g, were divided into 8 groups; 1) control group, 2) ischemic preconditioning only groups, 3) pinacidil, a $K_{APT}$ channel opener, treatment only groups, 4) glibenclamide, a $K_{APT}$ channel blocker, treatment only groups, 5) ischemia groups, 6) ischemia after IPC groups, 7) ischemia and pinacidil treatment groups, and 8) IP and ischemia after glibenclamide pretreatment groups. Animals of the control group were administered with the vehicle (DMSO) alone. Pinacidil (1mg/kg) was administered intravenously 5 minutes after initiation of ischemia, and glibenclamide (0.5mg/kg) was injected intravenously 20 minutes before IPC. In rats that were ischemic preconditioned, the left common iliac artery was occluded for 5 minutes followed by 5 minutes of reperfusion by three times using vascular clamp. Ischemia was done by occlusion of the same artery for 4 hours. The specimens of left rectus femoris muscle were obtained immediately (0 hour), 12 hours, 24 hours after drug administrations, IP or ischemia and reperfusion. The immunoreactivities of SOD and its alterations were observed by use of sheep antihuman Cu,Zn-SOD and Mn-SOD antibodies on the $10{\mu}m$ cryosections. The incidencies of apoptosis were observed by TUNEL methods with in situ apoptosis detection kit on $6{\mu}m$ paraffine section. The results obtained were as follows : 1. After IPC, immunoreactivities of Cu,Zn-SOD mainly in the small-sized fibers were increased by 24 hours, that of Mn-SOD at 0 hour and 24 hours. 2. No significant changes in immunoreactivities of SOD was observed in the pinacidil and in the glibenclamide treatment only groups, and in the ischemia only groups. 3. The immunoreactivities of the Cu,Zn-SOD were increased in the ischemia after IPC groups and the ischemia and pinacidil treatment groups. 4. The immunoreactivities of the Cu,Zn-SOD in the IPC and ischemia after glibenclamide pretreatment groups were not increased except for the 12 hours reperfusion group. But, Mn-SOD immunoreactivities were increased in the 0 hours, 12 hours and 24 hours after reperfusion. 5. In the control group, the IPC only groups, and the pinacidil treatment only groups, negative or trace apoptotic reactions were observed, but the positive apoptotic reaction occured in the glibenclamide treatment groups. 6. Moderate or many number of apoptosis were revealed in the ischemia groups, and also the IPC and ischemia after glibenclamide pretreatment group except for 12 hours and 24 hours after reperfusion. However, the incidence of apoptosis was decreased in the ischemia after IPC groups and in the ischemia and pinacidil treatment groups. 7. There is a coincidence between the increase of Cu,Zn-SOD immunoreactivities and the decrease of apoptosis in the presence of ischemia and reperfusion. These results suggest that the protective effects of ishemic preconditioing may related to the SOD activation, and the ischemic preconditioning decreases the apoptosis partially via $K_{APT}$ channel activation in timely reperfused rat skeletal muscle. It is also suggested that inhibition of apoptosis by IPC may related with the SOD activation.

  • PDF

Manipulation of Antioxidative Mechanism in Chloroplasts

  • Kwon, Suk-Yoon;Lee, Haeng-Soon;Kwak, Sang-Soo
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.79-84
    • /
    • 1999
  • Oxidative stress is one of the major environmental stresses to plants. Reactive oxygen species (ROS) generated during metabolic processes damage cellular functions and consequently lead to cell death. Fortunately plants have in vivo defense system by which the ROS is scavenged by enzymes such as superoxide dismutase (SOD) and ascorbate peroxidase (APX). In attempts to understand the protection mechanism of plant against oxidative stress, we developed transgenic tobacco (Nicotiana tabacum cv. Xanthi) plansts thet expressed both SOD and APX in chloroplast using Agrobacterum-mediated transformation and evaluated their protection capabilities against methyl viologen (MV, paraquat) -mediated oxidative damage. Three double transformants (CAI, CA2, and CA3) expressed the chimeric CuZnSOD and chimeric APX in chloroplast, and one transformant (AM) expressed the chimeric APX and chimeric MnSOD in chloroplast. In addition, we obtained three lines of transformants (C/Al, C/A2, and A/C) that expressed the APX and SOD than control plants, and more resistant to oxidative stress caused by MV. TRansformants (C/A and A/C) overexpressing MnSOD, CuZnSOD and APX at the same time showed the highest resistance to MV-mediated oxidative stress among the transformants.

  • PDF

Cytotoxicity of Artemisia argyi Extract Against H9 (ATCC HTB 176) Cell and Antioxidant Enzyme Activities (황해쑥(Artemisia argyi)의 H9 (ATCC HTB176) 세포에 대한 세포독성 및 항산화효소 활성)

  • 김경하;정대영;민태진;박시원
    • YAKHAK HOEJI
    • /
    • v.43 no.5
    • /
    • pp.598-605
    • /
    • 1999
  • The hot water and mathanol extracts of Artemisia argyi showed considerable cytotoxicities against H9(ATCC HTB 176) cancer cell with IC50 values of $48.6{\;}\mu\textrm{g}/ml$ and $51.9{\;}\mu\textrm{g}/ml$, respectively. These cytotoxicities were found to be dependent on the extract concentrations and culture days. CuZnSOD and MnSOD activities were significantly increased in the cytoplasm and mitochondria fractions of cancer cell, and media in the presence of Artemisia argyi. Such enhanced SOD activities were generally in the range of two to threefolds. In contrast to SOD, catalase and glutathione peroxidase activities were not detected at all. These results suggest that Artemisia argyi have generated $O_2^-$ in the mitochondria and cytoplasm of H9 cancer cell with concurrent induction of CuZnSOD and MnSOD in situ, which dismutate $O_2^-{\}to{\;}H_2O_2$. Without coordinated actions of catalase and/or glutathione peroxidase $H_2O_2$ is easily converted to very toxic OH and these reactive oxygen species together might have induced necrosis and/or apoptosis of H9 cell.

  • PDF

Construction of Gene-Specific Primers for Various Antioxidant Isoenzyme Genes and Their Expressions in Rice (Oryza sativa L.) Seedlings Obtained from Gamma-irradiated Seeds

  • Kim, Jin-Hon;Chung, Byung-Yeoup;Kim, Jae-Sung;Wi, Seung-Gon;Yang, Dae-Hwa;Lee, Choon-Hwan;Lee, Myung-Chul
    • Journal of Photoscience
    • /
    • v.11 no.3
    • /
    • pp.115-120
    • /
    • 2004
  • For the expression study of antioxidant isoenzyme genes in rice (Oryza sativa L.) plants, extensive searches for genes of superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) isoforms were performed through the GenBank database. The genes for two cytosolic and one plastidic CuZn-SOD, one Fe-SOD, two Mn-SOD, two cytosolic and two chloroplastic (stromal and thylakoid) APX, and three CAT isoforms were available in japonica-type rice. These isoforms were named as cCuZn-SOD1, cCuZn-SOD2, pCuZn-SOD, Fe-SOD, Mn-SOD1, Mn-SOD2, cAPXa, cAPXb, Chl_sAPX, Chl_tAPX, CATa, CATb, and CATc, respectively. Since they shared a high degree of homology in the nucleotide and amino acid sequences, the gene-specific primers for the genes were designed directly from their full-length cDNAs found in the database except for the CATa gene. These primers were used in the RT-PCR analysis to investigate the differential expression of antioxidant isoenzyme genes in rice plants from the seeds irradiated with low doses (2, 4, 8, and 16 Gy) of gamma-radiation. The gammairradiation slightly increased the transcripts of pCuZn-SOD, while those of Fe-SOD, cAPXb, and CATb decreased. However, no substantial differences were observed in the expression of all the isoenzyme genes between the control and irradiated groups. In this study, gene specific primers for thirteen SOD, APX and CAT isoenzymes were constructed from the full-length cDNAs. The results of RT-PCR analysis obtained by using these primers suggests that the expression levels of SOD, APX, and CAT isoenzyme genes in rice seedlings were hardly affected by gamma-irradiation at the seed stage.

  • PDF

Cytotoxicity of Environmental Estrogenic Compound, Bisphenol A, via Generation of Free Radicals (내분비계 장애물질인 Bisphenol A의 free radical 생성을 통한 독성발현)

  • 안광현;김봉희
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.3
    • /
    • pp.175-182
    • /
    • 2003
  • Bisphenol A shares similarities in structure, metabolism and action with DES, a known human teratogen and carcinogen. Bisphenol A, a monomer of polycarbonate and epoxy resins, has been detected in canned food and human saliva. The purpose of the this study was to evaluate the cytotoxicity, cell proliferation of bisphenol A In the presence of a rat liver S9 mix, contaning cytochrome P450 enzymes, and Cu (II). In the present study, Bisphenol A in combination with Cu (II) exhibited a enhancement in cytotoxicity which were inhibited by free radical scavengers. The content of malondialdehyde, an end product of lipid peroxidation, was also found to increase with concentration of bisphenol A. Also, we examined the change of CuZn-SOD, Mn-SOD, catalase and GPx activities in the MCF-7 cells exposed to bisphenol A. The activities of CuZn-SOD, CPx, catalase were found to decrease with bisphenol A concentration. Meanwhile, the activity of Mn-SOD was unchanged. This indicated that elevated oxidative stress caused by imbalance between the production and removal of free radicals occurred in cells.