• Title/Summary/Keyword: Mn-SOD

Search Result 212, Processing Time 0.031 seconds

Superoxide Dismutase Profiles in the Mesophilic Deinococcus Species

  • Yun, Young-Sun;Lee, Young-Nam
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.232-235
    • /
    • 2001
  • Electrophoretic resolution of superoxide dismutase (SOD) from the highly UV-resistant bacteria, Deinococcus species revealed multiple forms of superoxide dismutases (SODs) in D. radiodurans, D. grandis, and D. proteolyticus, as judged from electrophoretic properties and metal cofactors. A single SOD occurred in both D. radiophilus and D. radiopugnans. Deinococcal SODs were either MnSOD, FeSOD or cambialistic Mn/FeSOD. The unique SOD profile of each mesophilic Deinococcus species, multiplicity and metal cofactors would be valuable in identifying Deinococcus species.

  • PDF

Superoxide Dismutase Gene Expression in the Endotoxin-Treated Rat Lung (내독소에 의한 백서 폐장의 Superoxide Dismutase 유전자 발현에 관한 연구)

  • Yoo, Chul-Gyu;Suh, Gee-Young;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.3
    • /
    • pp.215-221
    • /
    • 1994
  • Background: It is well known that oxygen free radicals(OFR) play a vital role in the various type of acute lung injury. Among various antioxidant defense mechanisms, the superoxide dismutases(SOD) are thought to be the first line of antioxidant defense by catalyzing the dismutation of two superoxide radicals to yield hydrogen peroxide and oxygen. Eukaryotic cells contain two types of intracellular SOD : cytosolic, dimeric copper/zinc- containing enzyme(CuZnSOD) and mitochondrial, tetrameric manganese-containing enzyme(MnSOD). The purpose of this study is to evaluate the time-dependent gene expression of MnSOD and CuZnSOD in the endotoxin-treated rats, and to compare with the manifestations of LPS-induced acute lung injury in rats. Methods: Total RNA from rat lung was isolated using single step phenol extraction 0, 1, 2, 4, 6, 12, 18, 24 hours after E. coli endotoxin injection(n=3, respectively). RNA was separated by formaldehyde-containing 1.2% agarose gels elctrophoresis, transblotted, baked, prehybridized, and hybridized with $^{32}P$-labeled cDNA probes for rat MnSOD and CuZnSOD, which were kindly donated by Dr. Ho(Duke University, Durham, NC, USA). The probes were labeled by nick translation. Blots were washed and autoradiography were quantitated using laser densitometry. Equivalent amounts of total RNA/gel were assessed by monitoring 28S and 18S rRNA. Results: Endotoxin caused a rise in steady-state MnSOD mRNA levels by 4h with peak mRNA accumulation by 6h. Continued MnSOD mRNA expression was observed at 12h. CuZnSOD mRNA expression was observed from 1h to 24h with peak levels by 18h. Conclusion: These results suggest that SOD palys an important defensive role in the endotoxin-induced acute lung injury in rats.

  • PDF

Different Association of Manganese Superoxide Dismutase Gene Polymorphisms with Risk of Prostate, Esophageal, and Lung Cancers: Evidence from a Meta-analysis of 20,025 Subjects

  • Sun, Guo-Gui;Wang, Ya-Di;Lu, Yi-Fang;Hu, Wan-Ning
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1937-1943
    • /
    • 2013
  • Altered expression or function of manganese superoxide dismutase (MnSOD) has been shown to be associated with cancer risk but assessment of gene polymorphisms has resulted in inconclusive data. Here a search of published data was made and 22 studies were recruited, covering 20,025 case and control subjects, for meta-analyses of the association of MnSOD polymorphisms with the risk of prostate, esophageal, and lung cancers. The data on 12 studies of prostate cancer (including 4,182 cases and 6,885 controls) showed a statistically significant association with the risk of development in co-dominant models and dominant models, but not in the recessive model. Subgroup analysis showed there was no statistically significant association of MnSOD polymorphisms with aggressive or nonaggressive prostate cancer in different genetic models. In addition, the data on four studies of esophageal cancer containing 620 cases and 909 controls showed a statistically significant association between MnSOD polymorphisms and risk in all comparison models. In contrast, the data on six studies of lung cancer with 3,375 cases and 4,050 controls showed that MnSOD polymorphisms were significantly associated with the decreased risk of lung cancer in the homozygote and dominant models, but not the heterozygote model. A subgroup analysis of the combination of MnSOD polymorphisms with tobacco smokers did not show any significant association with lung cancer risk, histological type, or clinical stage of lung cancer. The data from the current study indicated that the Ala allele MnSOD polymorphism is associated with increased risk of prostate and esophageal cancers, but with decreased risk of lung cancer. The underlying molecular mechanisms warrant further investigation.

Molecular Cloning and Characterization of Mn-Superoxide Dismutase Gene from Candida sp.

  • Hong, Yun-Mi;Nam, Yong-Suk;Choi, Soon-Yong
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.309-314
    • /
    • 1997
  • The manganese-containing superoxide dismutase (MnSOD) is a major component of the cellular defence mechanisms against the toxic effects of the superoxide radical. Within the framework of studies on oxidative stress=responsible enzymes in the Candida sp., the gene encoding the MnSOD was isolated and examined in this study. A specific primer was designed based on conserved regions of MnSOD sequences from other organisms, and was used to isolate the gene by PCR on reverse-transcribed Candida poly($A^{+}$) RNA. The PCR product was used to screen a Candida genomic lambda library and the nucleotide wequence of positive clone was determined. The deduced primary sequence encodes a 25kDa protein which has the conserved residues for enzyme activity and metal binding. The 28 N-terminal amino acids encoded by the Candida cDNA comprise a putatice mitochondrial transit peptide. Potential regulatory elements were identified in the 5' flanking sequences. Northern blot analysis showed that the transcription of the MnSOD gene is induced 5-to 10-fold in response to mercury, cadmium ions and hydrogen peroxide.

  • PDF

Major Fe-Superoxide Dismutase (FeSOD) Activity in Pseudomonas putida is Essential for Survival Under Conditions of Oxidative Stress During Microbial Challenge and Nutrient Limitation

  • Kim, Young-Cheol;Kim, Cheol-Soo;Cho, Baik-Ho;Anderson, Anne-J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.859-862
    • /
    • 2004
  • An isolate of Pseudomonas putida has been found to aggressively colonize root tips and induce plant resistance to Fusarium wilt. However, P. putida mutants lacking Fe-superoxide dismutase (SOD) or both FeSOD and MnSOD activities are less competitive in root tip colonization. In the current study, the growth of an FeSOD mutant was found to be more sensitive than that of the wild-type or a MnSOD mutant to oxidative stress imposed by paraquat treatment and culturing with the soil fungus Talaromyces flavus, which generates reactive oxygen species. Also, the loss of culturability with an aging stationary-phase culture was greater for a double SOD mutant than an FeSOD mutant, while no reduction in culturability was observed with the wild-type and a MnSOD mutant under the same protracted stationary-phase conditions. Accordingly, it was concluded that FeSOD activity is the major form of SOD in P. putida and plays an essential role in survival under stress conditions when increased oxidative stress is encountered.

Dietary Salmonella lysate affect on the antioxidant system(freshness) of broiler meats during 4$^{\circ}$C refrigeration (Salmonella lysate 첨가 사료가 저장중 계육 항산화계(신선도)에 미치는 영향)

  • Lee, Beom-Gyu;Im, Jin-Taek;Park, In-Gyeong;Choe, Do-Yeol;Choe, Jun-Yeong;Go, Tae-Song
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2006.11a
    • /
    • pp.60-61
    • /
    • 2006
  • Effect of dietary salmonella lysate in broiler chicks inoculated with Salmonella typhimurium on the antioxidant system(freshness) of broiler meats during 4$^{\circ}$C refrigeration was investigated. In Pectoral and leg muscle, regardless experimental diets, as the refrigeration day passed, CuZnSOD activity decreased gradually, while at 7d MnSOD activity and peroxide level raised and then lowered at 14d. MnSOD and peroxidase activity, however, had differed according to experimental diets. The results indicated that antioxidant system of broiler meats will be changed according to experimental diets(nutrients). As the CuZnSOD, MnSOD and peroxidase activity are responsible for proteolysis of muscle protein, it was concluded that change of antioxidant system during 4$^{\circ}$C storage explain the biological activity(freshness) of broiler meats.

  • PDF

The subcellular distribution of MnSOD alters during sodium selenite-induced apoptosis

  • Guan, Liying;Jiang, Qian;Li, Zhushi;Huang, Fang;Ren, Yun;Yang, Yang;Xu, Caimin
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.361-366
    • /
    • 2009
  • It was reported that high doses of sodium selenite can induce apoptosis of cancer cells, but the molecular mechanisms are poorly understood. Manganese superoxide dismutase (MnSOD) converts superoxide radical to hydrogen peroxide within the mitochondrial matrix and is one of the most important antioxidant enzymes. In this study, we showed that 20 ${\mu}M$ sodium selenite could alter subcellular distribution of MnSOD, namely a decrease in mitochondria and an increase in cytosol. The alteration of subcellular distribution of MnSOD is dependent on the production of superoxide induced by sodium selenite.

Superoxide Dismutase Isoenzyme Activities in Plasma and Tissues of Iraqi Patients with Breast Cancer

  • Hasan, Hathama Razooki;Mathkor, Thikra Hasan;Al-Habal, Mohammed Hasan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2571-2576
    • /
    • 2012
  • Breast cancer is the first of the most common ten cancers in Iraq. Its etiology is multifactorial, oxidative stress and lipid peroxidation being suggested to play important roles in carcinogenesis. The purpose of this study was to investigate the oxidant-antioxidant status in breast cancer patients, by measuring SOD isoenzyme activities (total SOD, CuZn-SOD, Mn-SOD and EC-SOD) in plasma and breast tumors, and by estimating thiobarbituric reactive substances (TBRS) in tissue homogenates. General increase in total SOD activity was observed in plasma and tissue samples of breast tumors, greater in the malignant when compared to benign group (p<0.05). Mn-SOD showed a significant decrease in tissue malignant samples (p<0.05), and insignificant decrease in plasma malignant samples compared with control and benign samples. Plasma EC-SOD activity in both patient benign and malignant breast tumors demonstrated 3.5% and 22.8% increase, respectively. However, there was a decrease in tissue EC-SOD activity in malignant breast tumors when compared with benign. A similar tendency was noted for TBRS. We suggest that elevated total SOD might reflect a response to oxidative stress, and then may predict a state of excess reactive oxygen species in the carcinogenesis process. If there is proteolytic removal of the heparin binding domain, EC-SOD will lose its affinity for the extracellular matrix and diffuse out of the tissue. This will result in a decreased EC-SOD activity, thus leading to an increase in the steady-state concentration of $O^{2-}$ in this domain, and increase in EC-SOD activity in the extracellular fluid. This might explain the results recorded here concerning the decrease in tissue EC-SOD activity and increase in plasma of breast cancer patients.

Identification and Molecular Characterization of Superoxide Dismutase Genes in Pseudomonas rhodesiae KK1 Capable of Polycyclic Aromatic Hydrocarbon Degradation (PAH를 분해할 수 있는 Pseudomonas rhodesiae KK1의 SOD 유전자의 동정 및 분자학적 특성 분석)

  • Lee, Dong-Heon;Oh, Kye-Heon;Kim, Seung Il;Kahng, Hyung-Yeel
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.75-82
    • /
    • 2016
  • Pseudomonas rhodesiae KK1 has been reported to degrade polycyclic aromatic hydrocarbons (PAHs), such as anthracene, naphthalene, and phenanthrene, which are considered major environmental contaminants. Interestingly, antioxidant genes, including superoxide dismutase, are known to be expressed at different levels in response to environmental contaminants. This study was performed to identify the superoxide dismutase gene in strain KK1, which may be indirectly involved with degradation of PAHs, as well as to investigate the expression pattern of the superoxide dismutase gene in cells grown on different PAHs. Two types of superoxide dismutase genes responsible for the antioxidant defense mechanism, Mn-superoxide dismutase (sodA) and Fe-superoxide dismutase (sodB), were identified in P. rhodesiae KK1. The sodA gene in strain KK1 shared 95% similarity, based on 141 amino acids, with the Mn-sod of P. fluorescens Pf-5. The sodB strain, based on 135 amino acids, shared 99% similarity with the Fe-sod of P. fluorescens Pf-5. Southern hybridization using the sod gene fragment as a probe showed that at least two copies of superoxide dismutase genes exist in strain KK1. RT-PCR analysis revealed that the sodA and sodB genes were more strongly expressed in response to naphthalene and phenanthrene than to anthracene. Interestingly, sodA and sodB activities were revealed to be maintained in cells grown on all of the tested substrates, including glucose.