• Title/Summary/Keyword: Mn-SOD

Search Result 212, Processing Time 0.03 seconds

miR-23a Regulates Cardiomyocyte Apoptosis by Targeting Manganese Superoxide Dismutase

  • Long, Bo;Gan, Tian-Yi;Zhang, Rong-Cheng;Zhang, Yu-Hui
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.542-549
    • /
    • 2017
  • Cardiomyocyte apoptosis is initiated by various cellular insults and accumulated cardiomyocyte apoptosis leads to the pathogenesis of heart failure. Excessive reactive oxygen species (ROS) provoke apoptotic cascades. Manganese superoxide dismutase (MnSOD) is an important antioxidant enzyme that converts cellular ROS into harmless products. In this study, we demonstrate that MnSOD is down-regulated upon hydrogen peroxide treatment or ischemia/reperfusion (I/R) injury. Enhanced expression of MnSOD attenuates cardiomyocyte apoptosis and myocardial infarction induced by I/R injury. Further, we show that miR-23a directly regulates the expression of MnSOD. miR-23a regulates cardiomyocyte apoptosis by suppressing the expression of MnSOD. Our study reveals a novel model regulating cardiomyocyte apoptosis which is composed of miR-23a and MnSOD. Our study provides a new method to tackling apoptosis related cardiac diseases.

Pre-Exercise Protective Effects Against Renal Ischemic Reperfusion Injury in Hsp 70.1 Knockout Mice (Hsp70.1유전자결핍된 마우스에서 허혈 재관류 신장손상에 대한 전처치 운동의 보호효과)

  • Lee, Jin;Kim, Won-Kyu
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.555-560
    • /
    • 2010
  • The objective of this study was to investigate levels of serum creatinine, CuSOD and MnSOD protein expression in the kidney after renal ischemic reperfusion with pre-exercise using heat shock protein 70.1 in knock-out mice (KO). The C57/BL6 strain (Wild type: WT) and KO were divided into 4 groups as follows: Sham control group (Sham), pre-exercise group (Ex), pre-exercise +ischemia group (Ex+IR), and ischemia group (IR). CuSOD and MnSOD expression were significantly decreased (p<0.01, p<0.05) and blood creatinine concentration was significantly increased (p<0.01) in the IR group of KO. In contrast, CuSOD and MnSOD expression in the Ex+IR group of KO were higher than the IR group, while creatinine concentration was significantly lower. These results suggest that Hsp70 is directly correlated to renal ischemic reperfusion injury. Pre-exercise in renal ischemia might prevent or inhibit positive oxidative stress inhibitory effects by increasing anti-oxidative enzymes (CuSOD, MnSOD) within the kidney and improve to prevent renal function. Thus, pre-exercise may have a protective role against renal injury after renal ischemia.

Changes of Growth and Antioxidative Enzyme(SOD, APX, GR) Activities of Spinach Beet(Beta vulgaris var. cicla) Under Saline Condition (염 환경하에서 근대(Beta vulgaris var. cicla)의 생장과 항산화효소(SOD, APX, GR)의 활성변화)

  • 배정진;추연식;송승달
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.658-667
    • /
    • 2003
  • Antioxidative enzymes (superoxide dismutase; SOD, ascorbate peroxidase; APX, glutathione reductase; GR) play major roles in scavenging mechanism of reactive oxygen species which were involved in various stress conditions including salt. In order to investigate the relation between their growth responses (dry weight) and the changes of antioxidative enzymes activity, salt-tolerant spinach beet having 15cm of shoot length were treated with various salt levels (0, 50, 200, 1000 mM NaCl) for 24 hours. Spinach beet exhibited an increase in the activity of antioxidative enzymes by salt, the maximal activity at 200 mM NaCl and the lowest activity at 50 mM NaCl in 2 hrs. after treatments. As a result of PAGE, it has been confirmed that spinach beet contained 3 isoforms (Fe-SOD, CuZn-SOD and Mn-SOD) of SOD and main isoform was CuZn- SOD form. In case of APX, isoforms of the low molecular weight(No. 7, 8) were showed strong expression especially at 200 and 400 mM NaCl treatment. Meanwhile, GR did not show specific pattern of isoforms among the salt treatments. Especially, in case of 50 mM treatment, plant showed the lowest activity of SOD with the best growth, a low enzyme activity was induced by inactivation of the Mn-SOD. Therefore, we suggested that the decrease of SOD activity at a low salt level (50 mM NaCl) or the increase of enzyme activity at a high salt level (200 mM NaCl) may be related to expression of the Mn-SOD isoform. These antioxidative enzymes showed the increase of activity in a short time by salt addition. So, it is considered that spinach beet copes effectively with a stressful condition such as salt by operating effective antioxidative defense mechanism rapidly under high salt level.

Placental Superoxide Dismutase, Genetic Polymorphism, and Neonatal Birth Weight

  • Hong, Yun-Chul;Lee, Kwan-Hee;Im, Moon-Hwan;Kim, Young-Ju;Ha, Eun-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.37 no.4
    • /
    • pp.306-311
    • /
    • 2004
  • Background : The roles of antioxidants in the placenta and genetic susceptibility to oxidant chemicals in relation to neonatal birth weight have not been elucidated. We determined whether the level of placental manganese superoxide dismutase (MnSOD) and its genetic polymorphism plays any role in oxidative stress and neonatal birth weight. Methods : We measured placental MnSOD and determined MnSOD genetic polymorphism among 108 pregnant women who were hospitalized for delivery and their singleton live births in Korea. Main outcome measurements are maternal urinary malondialdehyde (MDA) and birth weight. Results : Maternal urinary concentrations of MDA were significantly associated with neonatal birth weight (P=0.04). The enzyme level of placental MnSOD was also significantly associated with MDA concentration (P=0.04) and neonatal birth weight (p<0.01). We observed dose-response relationships between placental MnSOD and maternal urinary MDA, and neonatal birth weight after adjusting for maternal weight, height, age, and neonatal sex. After controlling for covariates, MnSOD variant genotype increased maternal urinary MDA concentrations (p<0.01) and reduced birth weight by 149 gm (P=0.08). Conclusions : This study demonstrates that the placental level of MnSOD during pregnancy significantly affects fetal growth by reducing oxidative stress, and that genetic polymorphism of MnSOD probably modulate the effects of oxidants on fetal growth.

The Role of MnSOD in the Mechanisms of Acquired Resistance to TNF (TNF에 대한 내성획득에서 MnSOD의 역할에 관한 연구)

  • Lee, Hyuk-Pyo;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1353-1365
    • /
    • 1997
  • Background : Tumor necrosis factor(TNF) has been considered as an important candidate for cancer gene therapy based on its potent anti-tumor activity. However, since the efficiency of current techniques of gene transfer is not satisfactory, the majority of current protocols is aiming the in vitro gene transfer to cancer cells and re-introducing genetically modified cancer cells to host. In the previous study, it was shown that TNF-sensitive cancer cells transfected with TNF-$\alpha$ cDNA would become highly resistant to TNF, and the probability was shown that the acquired resistance to TNF might be associated with synthesis of some protective protein. Understanding the mechanisms of TNF -resistance in TNF-$\alpha$ cDNA transfected cancer cells would be. an important step for improving the efficacy of cancer gene therapy as well as for better understandings of tumor biology. This study was designed to evaluate the role of MnSOD, an antioxidant enzyme, in the acquired resistance to TNF of TNF-$\alpha$ cDN A transfected cancer cells. Method : We transfected TNF-$\alpha$ c-DNA to WEHI164(murine fibrosarcoma cell line), NCI-H2058(human mesothelioma cell line), A549(human non-small cell lung cancer cell line), ME180(human cervix cancer cell line) cells using retroviral vector(pLT12SN(TNF)) and confirm the expression of TNF with PCR, ELISA, MIT assay. Then we determined the TNF resistance of TNF-$\alpha$ cDNA transfected cells(WEHI164-TNF, NCIH2058-TNF, A549-TNF, ME180-TNF) and the changes of MnSOD mRNA expressions with Northern blot analysis. Results : The MnSOD mRNA expressions of parental cells and genetically modified cells of WEHI164 and ME180 cells(both are naturally TNF sensitive) were not significantly different The MnSOD mRNA expressions of genetically modified cells of NCI-H2058 and A549(both are naturally TNF resistant) were higher than those of the parental cells, while those of parental cells with exogenous TNF were also elevated. Conclusion : The acquired resistance to TNF after TNF-$\alpha$ cDNA transfection may not be associated with the change in the MnSOD expression, but the difference in natural TNF sensitivity of each cell may be associated with the level of the MnSOD expression.

  • PDF

Study of Functional Verification to Abiotic Stress through Antioxidant Gene Transformation of Pyropia yezoensis (Bangiales, Rhodophyta) APX and MnSOD in Chlamydomonas

  • Lee, Hak-Jyung;Yang, Ho yeon;Choi, Jong-il
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1217-1224
    • /
    • 2018
  • Seaweeds produce antioxidants to counteract environmental stresses, and these antioxidant genes are regarded as important defense strategies for marine algae. In this study, the expression of Pyropia yezoensis (Bangiales, Rhodophyta) ascorbate peroxidase (PyAPX) and manganese-superoxide dismutase (PyMnSOD) was examined by qRT-PCR in P. yezoensis blades under abiotic stress conditions. Furthermore, the functional relevance of these genes was explored by overexpressing them in Chlamydomonas. A comparison of the different expression levels of PyAPX and PyMnSOD after exposure to each stress revealed that both genes were induced by high salt and UVB exposure, being increased approximately 3-fold after 12 h. The expression of the PyAPX and PyMnSOD genes also increased following exposure to $H_2O_2$. When these two genes were overexpressed in Chlamydomonas, the cells had a higher growth rate than control cells under conditions of hydrogen peroxide-induced oxidative stress, increased salinity, and UV exposure. These data suggest that Chlamydomonas is a suitable model for studying the function of stress genes, and that PyAPX and PyMnSOD genes are involved in the adaptation and defense against stresses that alter metabolism.

Characterization of Enzymes Against Oxygen Derivatives Produced by Rhodobacter sphaeroides D-230 (Rhodobacter sphaeroides D230이 생성하는 산소 유도체에 작용하는 효소의 특성)

  • 김동식;이혜주
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • The activities of enzymes that act on oxygen derivatives in Rhodobacter sphaeroides D-230 were investigated under various culture conditions. Intracellular SOD activity from the cells grown in aerobic or anaerobic culture conditions was highest at pH 7.0 and pH 8.0, respectively. On the other hand, extracellular SOD activity was highest at pH 6.0. Catalase activity was highest at neutral pH in both cases. Growth of R. sphaeroides D-230 in aerobic or anaerobic culture conditions was inhibited by methyl viologen. As R. sphaeroides D-230 was cul-tured aerobically, SOD activity was increased about 2-fold by addition of iron ion. But $Mn^+2$ had little effect on the SOD activity of R. sphaeroides D-230 grown in aerobically. NaCN, the inhibitor of Cu$.$Zn-SOD, did not inhibit SOD activity. But, $NaN_3$, the inhibitor of Mn-SOD, inhibited SOD activity in anaerobic cultures con-dition. Therefore, R. sphaeroides D-230 produce Mn-SOD in anaerobic condition, although Fe-Sod is produced in aerobic condition. The activity of catalase was induced by methyl viologen, however, extremely inhibited by NaCN and $NaN_3$.

The Virulence of Vibrio vulnificus is Affected by the Cellular Level of Superoxide Dismutase Activity

  • Kang, In-Hye;Kim, Ju-Sim;Lee, Jeong-K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1399-1402
    • /
    • 2007
  • The virulence of superoxide dismutase (SOD) mutants of Vibrio vulnificus, as tested by intraperitoneal injection into mice, decreases in the order of sodC mutant, sodA mutant, and sodB mutant lacking CuZnSOD, MnSOD, and FeSOD, respectively. The survival of SOD mutants under superoxide stress also decreases in the same order. The virulence of soxR mutant, which is unable to induce MnSOD in response to superoxide, is similar to that of the sodA mutant, as the survival of the soxR mutant under superoxide stress is similar to that of the sodA mutant. Consistently, the lowered survival of the soxR mutant is complemented not only with soxR but also with sodA. Thus, the virulence of V. vulnificus is significantly affected by the cellular level of SOD activity, and an increase in SOD level through MnSOD induction by SoxR under superoxide stress is essential for virulence.

Role of Inducibility of Superoxide Dismutases and Metallothionein of Mouse Lungs by Paraquat in Aging (Paraquat에 의한 생쥐 폐의 Superoxide Dismutases와 Metallothionein의 유도능과 노화와의 관계)

  • Lee, Tae-Bum;Park, Yoo-Hwan;Choi, Cheol-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.5
    • /
    • pp.579-590
    • /
    • 2001
  • Background : The aging process may be induced, at least in part, by reactive oxygen species(ROS). It has been thought that the lung could be a good source of ROS because it has a high oxygen tension. In the present study, we invetigated the inducibility of the first and last lines against oxidative stress, superoxide dismutases(CujZn-SOD and Mn-SOD) as a scavenger of ${O_2}^-\;{\cdot}$ and metallothionein(MT) as a scavenger of $OH{\cdot}$, respectively, in mouse lungs with age. Methods : Oxidative stress was induced by paraquat, an intracellular superoxide generator, at 1, 4, 8, and 12 months of age and then SODs and MT mRNAs were determined by RT-PCR method. Results : The steady-state level of Mn-SOD mRNA increased from 1 to 8 months but decreased thereafter. However, Mn-SOD mRNA was not induced by paraquat after 1 month. On the other hand, there was no change in the steady-state level of Cu/Zn-SOD mRNA, which decreased abruptly at 12 months of age. Additionally, Cu/Zn-SOD mRNA was not induced by paraquat at any age. There was no change in the steady-state level of MT mRNA with age whereas its inducibility by paraquat was intact at all ages. Conclusion : These results indicate that lack of induction of SODs with age may be one of the causative factors in the aging process while induction of MT may play an important role in the defense against oxidative stress. It is therefore implicated that the tissue antioxidant/prooxidant balance could be one of determinants of mean life span.

  • PDF

Erythrocyte Manganese Superoxide Dismutase Activity Indicates Training Intensity for Racing Horses (적혈구의 Manganese Superoxide Dismutase 활성은 경주마의 훈련강도를 나타낸다)

  • Choi, Jun-Young;Park, In-Kyung;Im, Jin-Taek;Koh, Tae-Song
    • Journal of Animal Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.573-580
    • /
    • 2008
  • This study was aimed to investigate that training of horses is related with the activity of superoxide dismutase(SOD) in erythrocyte of racing horses. The SOD activity was assayed from erythrocyte of six Thoroubred horses having final stage of training, about 21 month-old, 474~509 kg body weight for race trainig. During 7 weeks of training period from 24th Sep. to 6th Nov, horses were bled very carefully 4 times at 1st Oct, 16th Oct, 30th Oct. and 6th Nov. As the training period passed, erythrocyte of the horses have gradually increased the MnSOD activity(p<0.05) and lowered the CuZnSOD activity. The plasma ceruloplasmin and peroxidase activities, and lactate levels were reduced gradually while peroxide and glucose levels gradually increased. The calculated oxygen consumption(Eaton, 1995) for training of horses were linearly related with the MnSOD activity(r=0.650, n=32) but negatively with CuZnSOD activity in erythrocyte and lactate levels(r=-349, n=32) in plasma. Also, peroxide levels in plasma of horses had positive relation with the MnSOD activity in erythrocyte(r=0.616, n=48). In conclusions, as the training is progressed, the raised MnSOD activity in erythrocytes and peroxide levels in plasma indicated balances between oxidant and antioxidants for the protection from ROS during race of horses. The results showed that the MnSOD activity in erythrocyte and peroxide levels in plasma may be used as marker for the intensity of training racing horses.