• Title/Summary/Keyword: Mn-Al

Search Result 1,120, Processing Time 0.03 seconds

Effect of Cold Working on the Tensile Strength of Fe-26Mn-4Co-2Al Damping Alloy (Fe-26Mn-4Co-2Al 제진합금의 인장강도에 미치는 냉간가공의 영향)

  • Kang, Chang-Yong;Kim, Seong-Hwi;Jeong, Gyu-Seong
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.46-50
    • /
    • 2016
  • This study was carried out to investigate the effect of cold working on the tensile strength of Fe-26Mn-4Co-2Al damping alloy. ${\alpha}^{\prime}$ and ${\varepsilon}$-martensite were formed by cold working, and martensite was formed with the specific direction and surface relief. With the increasing degree of cold rolling, volume fraction of ${\alpha}^{\prime}$-martensite was increased, whereas the volume fraction of ${\varepsilon}$-martensite was decreased after rising to maximum value at specific lever of cold rolling. Tensile strength was linearly increased with an increasing of degree of cold rolling. Tensile strength was strongly affected to the volume fraction of ${\varepsilon}$-martensite formed by cold working, but the effect of volume fraction of ${\varepsilon}$-martensite on the tensile strength was not observed.

Effect of pH and Drying Temperature on Luminescent Properties of Zn2SiO4:Mn,Al Green Phosphors by Sol-Gel Technique (졸-겔 합성에서 pH 및 건조온도가 Zn2SiO4:Mn,Al 녹색 형광체의 발광특성에 미치는 영향)

  • Sung, Bu-Yong;Han, Cheong-Hwa;Park, Hee-Dong
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.333-337
    • /
    • 2005
  • In order to improve the performance of green emitting phosphors for plasma display panel, the $Zn_2SiO_4:Mn,Al$ phosphors were synthesized using sol-gel technique and studied using SEM and VUV photoluminescence spectrometer. pH values of the starting solutions (pH = 0.5$\~$2.34) were controled by HCl as the catalysis of hydrolysis and wet gels were dried at $80^{\circ}C$ and $120^{\circ}C$, respectively. We investigated the effects of pH and drying temperatures during sol-gel processes. The results indicated that the phosphor prepared at pH = 1 showed the maximum emission intensity in both drying conditions and the effect of pH of the starting solution on morphology were increased with particle size as HCl and phosphor dried at high temperature showed more spherical and smaller particles than at low.

Electrode Characteristics of the (Mm)Ni5-Based Hydrogen Storage Alloys ((Mm)Ni5계 수소저장합금의 전극 특성)

  • Han, D.S.;Choi, S.J.;Chang, M.H.;Choi, J.;Park, C.N.
    • Journal of Hydrogen and New Energy
    • /
    • v.6 no.1
    • /
    • pp.35-41
    • /
    • 1995
  • The MmNi-based alloy electrode was studied for use as a negative electrode in Ni-MH battery. Alloys with $MmNi_5-_xM_x$(M=Co,Al,Mn) composition were synthesized, and their electrode charateristics of activation rate, temperature dependence, electrode capacity and cycle life were investigated. With increasing Al content and decreasing Mn content in the alloys, the discharge capacity increased while the cycle life decreased. As x in $MmNi_5-_xM_x$ increased from 1.5 to 2.0, decreasing the Ni content, the discharge capacity, the low temperature property and the rate capability decreased. However its cycle life was improved. Increasing Co content resulted in a prolonged cycle life and decrease of high rate discharge capacity. It can be concluded that the most promising alloy in view of discharge capacity and cycle life is $MmNi_{3.5}Co_{0.7}Al_{0.5}Mn_{0.3}$.

  • PDF

An Experimental Study for Mechanical Properties of Al-Mg-Mn-Si Alloy by ECA pressing (ECA기법을 활용한 Al-Mg-Mn-Si 합금의 기계적 성질에 관한 연구)

  • Kook, Jong-Han
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.785-792
    • /
    • 2011
  • Equal channel angular(ECA) pressing is the established processing technique in which a polycrystalline metal is pressed through the die to achieve a very high plastic strain. Therefore, the capability to produce an ultra-fine grain size in the materials is provided. To investigate that mechanical properties at elevated temperature have the ultrafine grain ECA pressing, experiments were conducted on an Al-4.8% Mg-0.07% Mn-O.06% Si alloy. After having been solution treated at 773K for 2hrs, the billet for ECA pressing was inserted into the die. And it was pressed through two channel of equal to cross section intersecting at a 90 degree angle. The billet can be extrude repeatedly because of 1:1 extrusion ratio. Since the billet is passed through the cannel for 2 times, a large strain is accumulated in the alloy. The tensile tests on elevated temperature were carried out with initial strain rate of $10^{-3}s^{-1}$ at eight temperature distributed from 293K to 673K.

The Microstructural Evolution of Mg-10Al-Mn Alloy by Cooling Plate During Homogenization Treatment (냉각판법에 의한 Mg-10Al-Mn 합금의 균질화 처리에 따른 미세조직 변화)

  • Kim, Dae-Hwan;Choi, Seung-Hwa;Kim, Hee-Kyung;Shim, Sung-Young;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.30 no.6
    • /
    • pp.235-240
    • /
    • 2010
  • The evolution of microstructure and phases of Mg-10Al-Mn alloy by cooling plate method during homogenization treatment have been investigated with metallographic analysis, scanning electron microscopy and energy dispersive spectroscopy. The ingots used for this experiment were prepared by cooling plate and homogenization heat treatment was performed at 300 and $400^{\circ}C$ for various holding times (0, 1, 4, 8 and 12h). The casting ingots were consisted of the fine grains and eutectic phases. And, these eutectic phases were dissolved into the matrix during homogenization treatment at $400^{\circ}C$ but the lower temperature (at $300^{\circ}C$) did not be.

Abundances of refractory elements for stars with extrasolar planets : New samples

  • Park, Sun-Kyung;Kang, Won-Seok;Lee, Sang-Gak;Lee, Jeong-Eun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.147.1-147.1
    • /
    • 2011
  • We investigate the chemical differentiation in F, G, K type stars with and without planets to extend the work by Kang et al. (2011) to various spectral types. Since the primordial chemical composition has been preserved in the stellar atmosphere, stellar metallicity can provide the information on the primordial material, which is the potential building block of planets. Therefore, we can explore the favored conditions for planet formation through the comparison of chemical compositions between planet-host stars (PHSs) and stars without planets. In this work, we analyze 19 F, G, and K type stars. In each spectrum, we measure equivalent widths (EWs) of Fe, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, and Ni using TAME (Tools for Automatic Measurement of Equivalent width). The abundances of these species can be derived with the measured EWs and MOOG code (Sneden 1973). Like results by precedent studies, we find that planet-host stars have abundances higher than stars without planets. The typical difference in the abundances of Na, Mn, Co and Ni is $0.4{\pm}0.2dex$. In addition, as found in Kang et al. (2011), Mn is the most different element between PHSs and comparison stars.

  • PDF

Novel process of rare-earth free magnet and thermochemical route for the fabrication of permanent magnet

  • Choi, Chul-Jin
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.12a
    • /
    • pp.89-89
    • /
    • 2013
  • Rare earth (RE) - transition metal based high energy density magnets are of immense significance in various engineering applications. $Nd_2Fe_{14}B$ magnets possess the highest energy product and are widely used in whole industries. Simultaneously, composite alloys that are cheap, cost effective and strong commercially available have drawn great attention, because rare-earth metals are costly, less abundant and strategic shortage. We designed rare-earth free alloys and fabrication process and developed novel route to prepare $Nd_2Fe_{14}B$ powders by wet process employing spray drying and reduction-diffusion (R-D) without the use of high purity metals as raw material. MnAl-base permanent magnetic powders are potentially important material for rare-earth free magnets. We have prepared the nano-sized MnAl powders by plasma arc discharge and micron-sized MnAl powders by gas atomization. They showed good magnetic property, compared with that from conventional processes. $Nd_2Fe_{14}B$ powders with high coercivity of more than 10 kOe were successfully synthesized by adjusting R-D step, followed by precise washing system. It is considered that this process can be applied for the recycling of RE-elements extracted from ewaste including motors.

  • PDF

Effect of Intercritical Annealing on Microstructure and Mechanical Properties of Fe-9Mn-0.2C-3Al-0.5Si Medium Manganese Steels Containing Cu and Ni (구리와 니켈이 포함된 Fe-9Mn-0.2C-3Al-0.5Si 중망간강의 미세조직과 기계적 특성에 미치는 2상역 어닐링의 영향)

  • Lee, Seung-Wan;Sin, Seung-Hyuk;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.30 no.1
    • /
    • pp.44-49
    • /
    • 2020
  • The effect of intercritical annealing temperature on the microstructure and mechanical properties of Fe-9Mn-0.2C-3Al-0.5Si medium manganese steels containing Cu and Ni is investigated in this study. Six kinds of medium manganese steels are fabricated by varying the chemical composition and intercritical annealing temperature. Hardness and tensile tests are performed to examine the correlation of microstructure and mechanical properties for the intercritical annealed medium manganese steels containing Cu and Ni. The microstructures of all the steels are composed mostly of lath ferrite, reverted austenite and cementite, regardless of annealing temperature. The room-temperature tensile test results show that the yield and tensile strengths decrease with increasing intercritical annealing temperature due to higher volume fraction and larger thickness of reverted austenite. On the other hand, total and uniform elongations, and strain hardening exponent increase due to higher dislocation density because transformation-induced plasticity is promoted with increasing annealing temperature by reduction in reverted austenite stability.

Analysis of multi-elemental concentration in hair according to effect of permanent wave and bleaching agents (모발의 탈색 및 퍼머넌트 웨이브 효과에 따른 다-원소금속 성분의 함량 분석)

  • Kim, Jun-Kwang;Ha, Byung-Jo
    • Analytical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.524-528
    • /
    • 2007
  • Variations of the twenty one metal components (Mg, Al, V, Cr, Co, Sr, Ba, Na, K Mn, Fe, Cu, Zn, As, Hg, Pb, Ca, P, Mo, Cd, Sb) were analyzed in human hair sample by inductively coupled plasma mass spectrometry (ICP-MS). The effect of bleach and permanent wave manipulation on the elemental composition of hair were investigated. It was found that the composition of hair varied with hair bleach and permanent wave. Hair sample was collected from male in the age of thirties. Hair sample (0.05 g) was added to the Teflon digestion bomb together with 1.5 mL of nitric acid and an appropriate amount of In as an internal standard. The sample was then decomposed in the microwave digestion system. In normal hair, the contents of V, Cr, Mn, Fe, Co, Cu, Zn, As, Mo, Cd, Sb and P were increased in permanent wave hair, and Mg, Al, V, Co, Sr, Ba, Na and K were increased in bleached hair. But Mg, Al, Sr, Ba, Hg, Pb, Na, K, and Ca contents were decreased with permanent wave hair, Mn, Fe, Cu, Zn, As, Hg, Pb and Ca contents were decreased with bleached hair.

Crystal Structure of an Acetylene Sorption Complex of Dehydrated Fully Mn(II)-Exchanged Zeolite X

  • 배명남;김양
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1095-1099
    • /
    • 1998
  • The crystal structure of an acetylene sorption complex of dehydrated fully Mn(Ⅱ)-exchanged zeolite X, Mn46Si100Al92O384·30C2H2 (a=24.705(3) Å) has been determined by single-crystal X-ray diffraction techniques. The structure was solved and refined in the cubic space group Fd3 at 21(l) ℃. The complex was prepared by dehydration at 380 ℃ and 2 x 10-6 Torr for 2 days, followed by exposure to 300 Torr of acetylene gas for 2 h at 24 ℃. The structure was refined to the final error indices, R1=0.060 and R2=0.054 with 383 reflections for which I > 3σ(Ⅰ). In the structure, Mn2+ ions are located at two different crystallographic sites; sixteen Mn2+ ions at site I are located at the centers of the double six rings and thirty Mn2+ ions are found at site Ⅱ in the supercage, respectively. Each of these latter Mn2+ ions is recessed ca. 0.385(2) Å into the supercage from its three-oxygen plane. Thirty acetylene molecules are sorbed per unit cell. Each Mn2+ ion at site Ⅱ lies on a threefold axis in the supercage of the unit cell, close to three equivalent trigonally arranged zeolite framework oxygen atoms (Mn(Ⅱ)-O=2.135(9) Å) and symmetrically to both carbon atoms of a C2H2 molecules. At these latter distances, the Mn(Ⅱ)-C interactions are weak (Mn(Ⅱ)-C=2.70(5) Å), probably resulting from electrostatic attractions between the divalent cations and the polarizable π-electron density of the acetylene molecules.