• Title/Summary/Keyword: Mn-Al

Search Result 1,114, Processing Time 0.024 seconds

Hydrogen Embrittlement Properties of Austenitic Fe-30Mn-0.2C(-1.5Al) High-Manganese Steels for Cryogenic Applications (극저온용 오스테나이트계 Fe-30Mn-0.2C(-1.5Al) 고망간강의 수소 취화 특성)

  • Lee, Sang-In;Lee, Ji-Min;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.6
    • /
    • pp.283-289
    • /
    • 2018
  • This present study deals with the hydrogen embrittlement properties of austenitic Fe-30Mn-0.2C(-1.5Al) high-manganese steels for cryogenic applications. They were electrochemically charged with hydrogen and then subjected to tensile tests for evaluating hydrogen embrittlement behavior. Tensile test results showed that after hydrogen charging the tensile strength and elongation of the Al-free steel were more remarkably decreased with increasing current density when compared to the Al-added steel. After hydrogen charging of the Al-added steel, it was found that the measured hydrogen content was small and silver particles were relatively less decorated. Therefore, the Al-added steel has a superior hydrogen embrittlement resistance to the Al-free steel because the addition of Al suppresses the injection of hydrogen during electrochemical hydrogen charging.

The Magnetic Characteristics and Microstructure of Mn-A1 System Alloys(1st Report) -Focused on the Mn-A1 Alloys- (Mn-Al계 합금의 열처리에 따른 미세조직 변화와 지기적 특성(제1보) -Mn-Al-Cu 합금을 중심으로-)

  • Pang, Man-Gyu;Yang, Hyun-Soo;Kwak, Chang-Sup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.4
    • /
    • pp.48-58
    • /
    • 1988
  • This study was undertaken to observe the formation behavior of ferro- magnetic phase in Mn-Al-Cu Alloys. The alloy selected for this investigation was 70% Mn-29% Al-1% Cu. This pre-allyed pig was prepared to the cylinderical castings using an Induction furnace after homogenizing at $1100^{\circ}C$ for 2hr, the specimens were cooled by cooling methods. Subwequent isothermal heat treatments were followed at $550^{\circ}C$ for various periods of time at predetermined(1-1000min). The formation behavior of ferromagnetic phase was investigated by measurements of magnetic properties of the specimens at each stage of heat treatment, and optical microscopic esamination and X-Ray diffraction analyses were also employed. By this basic experimental results, the conclusions are as follows 1) In order to obtain much amount of ferromagnetic phase, the optimum average cooling rate was about 7.35-$16.4^{\circ}C$/sec($1100^{\circ}C$-$600^{\circ}C$). 2) We verified the decomposition of {\tau} phase to {\beta} -Mn and {\gamma} , as the specimens were homogenized at $1100^{\circ}C$ for 12hr, then heat-treased at $550^{\circ}C$ for 1-1000min. 3) A condition of optimum heat treatments in Mn-Al-Cu permanent mag-netic alloys showed that after homogenizing at $1100^{\circ}C$ for 2hr, the speciments were cooled in air or furnace(A) and subsequent heat treatments at $550^{\circ}C$ for 1-30min. The maximum magnetic properties were measured as follows: Air cooling; Br=1200(Gause), bHc=100(oe), (BH)max=0.07(MGOe) Furnace cooling(A);Br=950(Gauss), bhe=80(Oe), (BH)max=0.05(MGOe)

  • PDF

Manufacturing of Fe-Mn-Al-C Based Low Mn Lightweight Steel Via Direct Energy Deposition (Direct energy deposition 공정을 이용한 Fe-Mn-Al-C계 저망간 경량철강 제조)

  • Ko, Kwang Kyu;Son, Han Sol;Jung, Cha Hee;Bae, Hyo Ju;Park, Eun Hye;Kim, Jung Gi;Choi, Hyunjoo;Seol, Jae Bok
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.320-324
    • /
    • 2022
  • Lightweight steel is a crucial material that is being actively studied because of increased carbon emissions, tightening regulations regarding fuel efficiency, and the emergence of UAM, all of which have been recently labeled as global issues. Hence, new strategies concerning the thickness and size reduction of steel are required. In this study, we manufacture lightweight steel of the Fe-Mn-Al-C system, which has been recently studied using the DED process. By using 2.8 wt.% low-Mn lightweight steel, we attempt to solve the challenge of joining steel parts with a large amount of Mn. Among the various process variables, the laser scan power is set at 600 and 800 W, and the laser scan speed is fixed at 16.67 mm/s before the experiments. Several pores and cracks are observed under both conditions, and negligibly small pores of approximately 0.5 ㎛ are observed.

Mn-deprived Phase Transformation in High-Mn Steel during the Dew-point Control Process

  • Hong, Woong-Pyo;Baik, Sung-Il;Kim, Gyo-Sung;Jeon, Sun-Ho;Chin, Kwang-Guen;Oh, Chang-Seok;Kim, Young-Woon
    • Applied Microscopy
    • /
    • v.43 no.1
    • /
    • pp.40-45
    • /
    • 2013
  • Phase transformation by the Mn-deprivation was observed in the high-Mn twinning-induced plasticity-aided steel. Mn-depletion was induced by the formation of Mn-O oxide during the dew-point control process at temperature above $-20^{\circ}C$, which changed austenitic parent phase to multi-grained ferrite. Mixture of Al-O, Al-Mn-Si-O oxides were observed at the grain boundaries of transformed ferrite.

Fabrication and Its Characteristics of YSZ Composite with Added Transition Metal Oxides (천이금속산화물이 첨가된 YSZ 복합체의 제조 및 그 특성)

  • 최성운;박재성
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.341-349
    • /
    • 2002
  • Electrical, mechanical and sinterability properties of yttria-stabilized zirconia doped with 5.35wt% $Y_2$O$_3$(Y$_2$O$_3$- containing stabilized zirconia : YSZ) were studied as a function of $Al_2$O$_3$, CoO, Fe$_2$O$_3$ and MnO$_2$ addition. The ratio of monoclinic phase to tetragonal phase was changed by the addition of $Al_2$O$_3$, CoO, Fe$_2$O$_3$ and MnO$_2$ to 8.00 wt% and sintered density decreased with increasing $Al_2$O$_3$, CoO, Fe$_2$O$_3$ and MnO$_2$ addition. Fracture toughness increased with the increase of monoclinic to tetragonal phase ratio and was maximum at about 18%. When transition metals such as CoO, Fe$_2$O$_3$ or MnO$_2$ was added more than 1.5 wt%, the electrical conductivity of YSZ increased. But $Al_2$O$_3$ hardly affected the electrical conductivity of YSZ. The addition of $Al_2$O$_3$, CoO, Fe$_2$O$_3$ and MnO$_2$ into YSZ resulted in the more complex behavior of fracture toughness and hardness variation and the specimen with 1.5wt%-Fe$_2$O$_3$, 3.0wt%-Al$_2$O$_3$ and 1.5wt%-CoO showed the monoclinic to tetragonal phase ratio of 18% and the highest toughness of 10.8 MPa.m$^{1}$2/ and Vickers hardness of 1201 kgf/mm$^2$.

A Study on Catalysts for Simultaneous Removal of 1,2-Dichlorobenzene and NOx (1,2-Dichlorobenzene 및 질소산화물 동시제거를 위한 촉매연구)

  • Park, Kwang Hee;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.522-526
    • /
    • 2009
  • The catalytic oxidation of 1,2-dichloribenzene (1,2-DCB) and simultaneous catalytic reduction of nitrogen oxides over the single catalyst has been investigated over various metals (Ru, Mn, Co and Fe) supported on $Al_2O_3$ and $CeO_{2}$. The activity of the different catalysts for catalytic oxidation of 1,2-dichloribenzene depended on the used metal, Ru/Co/$Al_2O_3$, Mn-Fe/CeO2 and Cr/$Al_2O_3$ (commercial catalysts) being the most actives ones. In the catalytic oxidation of chlorobenzene (CB), Ru/Co/$Al_2O_3$ is better than Pt-Pd/$Al_2O_3$, which is the well-known catalyst good for VOC oxidation. Furthermore, it has a good durability on the deactivation by $Cl_2$ and sulfur. For nitrogen oxides (NOx) removal, NOx conversion was 70% at $260^{\circ}C$.

Mechanical Properties of AlN Ceramics Prepaerd from Al-isopropoxide (Al-isopropoxide로부터 합성한 AlN 세라믹스의 기계적 성질)

  • 박세민;이홍림;조덕호
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.4
    • /
    • pp.453-458
    • /
    • 1989
  • Aluminum nitride powder prepared from the hydroxides, AlOOH and Al(OH)3 which were obtained by hydrolysis of Al-isopropoxide, was densified at 1750 and 180$0^{\circ}C$ for 60 min by hot-pressing under the pressure of 25kg/$\textrm{cm}^2$. Theoretical density could be obtained at 175$0^{\circ}C$. Their flexural strengths were 450MPa and 395MPa for the specimens obtained from Al(OH)3 and AlOOH, respectively. There was no remarkable change in flexural strength up to 100$0^{\circ}C$. Fracture toughness values were 3.50MN/m3/2 for Al(OH)3 and 3.11MN/m3/2 for AlOOH. It is assumed that these differences in mechanical properties are due to the abnormal grain growth for the AlN ceramics obtained from AlOOH.

  • PDF

Microstructure and Mechanical Properties of Al-5%Mg-1%Mn-x%Zn Alloys (Al-5%Mg-1%Mn-x%Zn합금의 미세조직 및 기계적 성질)

  • Kim, Jeong-Min;Seong, Ki-Dug;Yoo, Jung-Hoon;Jun, Joong-Hwan;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 2005
  • Effects of Zn and Zr additions on the microstructure and mechanical properties of Al-5%Mg-1%Mn alloys were investigated. As Zn content increased in the Al-Mg-Mn-Zn alloys, the tensile strength and ductility of as-cast alloys rather decreased while the tensile strength of the heat-treated alloys significantly increased mainly due to the precipitation of fine $MgZn_2$ phases. Small amount of Zr was added to the 3%Zn alloy to further enhance the mechanical properties, and it appeared to increase the strength and ductility, especially in as-cast state.

Variation of Fluidity and Mechanical Properties of Al-Mg Alloys with the Addition of Si, Mn, and Zn (합금원소 Si, Mn, Zn 첨가에 따른 Al-Mg 합금의 유동도 및 기계적 성질 변화)

  • Kim, Jeong-Min;Seong, Ki-Dug;Jun, Joong-Hwan;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of Korea Foundry Society
    • /
    • v.24 no.3
    • /
    • pp.138-144
    • /
    • 2004
  • Effects of alloying elements such as Si, Mn, Zn on the fluidity and mechanical properties of high ductility Al-Mg based alloys were investigated. The fluidity of alloys was evaluated using a vacuum suction fluidity test, and Si addition was observed to increase the fluidity of AI-Mg binary alloys substantially while Zn somewhat decreased the fluidity. However, both the strength and ductility were significantly deteriorated by the Si additions. It was observed that a small amount of Mn addition to Al-Mg alloy increased the tensile strength effectively without losing much ductility but the effect of Zn addition on the strength was relatively small.

The Effects of Microstructures and Some Additives (CoO and $Al_2O_3$) on the Magnetic Properties of Mn-Zn Ferrite (미세조직 및 첨가성분 (CoO와 $Al_2O_3$)이 Mn-Zn Ferrite의 자기적 성질에 미치는 영향)

  • 변수일;장승현
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.3
    • /
    • pp.142-154
    • /
    • 1979
  • The effects of microstructures and some additives $(CoO and Al_2O_3$) on the magnetic properties such as initial permeability, $\mu$-T curve, coercive force, and magnetic induction of MnZn ferrites have been studied. The powder was prepared by Hot Petroleum Drying Method. The basic composition of MnZn ferrites was 25.5mole % MnO, 22.0 mole% ZnO, 52.5 mole% $Fe_2O_3$. CoO in a concentration range from 0.05 to 0.5 mole% and $Al_2O_3$ from 2.5 to 7.5 mole% were added. Sintered density increased up to 97.5% of theoretical density. Permeability increased as average grain size increased, and that coercive force decreased as average grian size increased. Magnetic induction increased as sintered density increased. The variation of initial permeability with temperature in a temperature range from 0$^{\circ}$ to $60^{\circ}C$ was lowered (a flatter $\mu-T$ curve) as sintering temperature decreased. The compensation temperature To ofmagnetocrystalline anisotropy constant K1 and initial permeability varied with the species and amount of additives. When 0.05 mole% CoO was added to the basic composition, initial permeability at $15^{\circ}C$ increased from 5200 to 5900. The variation ofinitial permeability with temperature in a temperature range from 0^{\circ}to $60^{\circ}C$ was smaller (a flatter $\mu$-T curve) than that of the basic composition of Mn Zn ferrites. When 2.5 mole% $Al_2O_3$ was added, initial permeability at $15^{\circ}C$ decreased from 5200 to 3000. But the variation of initial permeability with temperature in a temperature range from 0$^{\circ}$to $60^{\circ}C$ was smaller (a flat ter $\mu-T$ curve) than when 0.05 mole% CoO was added. Experimental results showed that the conditions necessary for the occurrence of a very high permeability and a flat $\mu$-T curve were controversial even in a temperature range from $0^{\circ}$to $60^{\circ}C$.

  • PDF