• Title/Summary/Keyword: Mn-Al

Search Result 1,112, Processing Time 0.03 seconds

Microstructure and Tensile Properties of Al-Mn/Al-Si Hybrid Aluminum Alloy Prepared by Electromagnetic Duo-Casting (전자기 듀오캐스팅으로 제조한 Al-Mn/Al-Si 하이브리드 알루미늄합금의 미세조직과 인장 특성)

  • Park, Sung-Jin;Li, Tingju;Kim, Chong-Ho;Park, Jun-Pyo;Chang, Si-Young
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.97-102
    • /
    • 2012
  • The microstructure and tensile properties of Al-Mn/Al-Si hybrid aluminum alloys prepared by electromagnetic duocasting were investigated. Only the Al-Mn alloy showed the typical cast microstructure of columnar and equiaxed crystals. The primary dendrites and eutectic structure were clearly observed in the Al-Si alloy. There existed a macro-interface of Al-Mn/Al-Si alloys in the hybrid aluminum alloys. The macro-interface was well bonded, and the growth of primary dendrites in Al-Si alloy occurred from the macro-interface. The Al-Mn/Al-Si hybrid aluminum alloys with a well-bonded macro-interface showed excellent tensile strength and 0.2% proof stress, both of which are comparable to those values for binary Al-Mn alloy, indicating that the strength is preferentially dominated by the deformation of the Al-Mn alloy side. However, the degree of elongation was between that of binary Al-Mn and Al-Si alloys. The Al-Mn/Al-Si hybrid aluminum alloys were fractured on the Al-Mn alloy side. This was considered to have resulted from the limited deformation in the Al-Mn alloy side, which led to relatively low elongation compared to the binary Al-Mn alloy.

Effects of Al and Mn on the Growth, Nutrient Status and Gas Exchange Rates of Pinus densiflora Seedlings (소나무 묘목(苗木)의 생장(生長), 영양상태(營養狀態) 및 가스교환속도(交換速度)에 미치는 Al과 Mn의 영향(影響))

  • Lee, Choong Hwa;Jin, Hyun-O;Kim, Young-Kul
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.1
    • /
    • pp.74-82
    • /
    • 2001
  • The effects of Al and Mn concentration on dry weight growth, nutrient status and gas exchange rates of 2-Year-old Japanese red pine(Pinus densiflora) seedlings grown in a nutrient culture solution were investigated. Al was added as aluminum chloride at 0, 10, 30 or 60ppm, and Mn was added as manganese chloride at 0, 30 or 60ppm to the nutrient culture solution. The pH of the solution was maintained at 4.0 by adding HCl or NaOH solution. The seedlings were transplanted into the nutrient culture solution, then they were grown in a greenhouse for 90 days. The interactive effects of Al and Mn on the dry weight growth of the seedlings were not significant. There were a main effect of Al or Mn on the dry weight growth and element concentrations of the seedlings. The treatment with Al of ${\geq}10ppm$ or that with Mn of 60ppm induced a significant reduction in the dry weight growth, which indicates that the effect of Al is stronger than that of Mn. The chlorophyll content of needles was not affected by Al treatment, but was significantly reduced by treatment with Mn of 60ppm. Furthermore, the treatment with Al of 60ppm or that with Mn of ${\geq}30ppm$ caused a significant reduction in the dark respiration rate of the roots. The net photosynthetic rate of the seedlings reduced with increasing the concentration of Al or Mn in the nutrient culture solution, which suggests that Al or Mn induced reductions in the relative growth rate(RGR) and net assimilation rate(NAR) of the seedlings were mainly due to the decrease of net photosynthesis.

  • PDF

Microstructure, High Temperature Deformation Behavior and Hot Formability of Modified Al-0.7Mn alloy (개량 Al-0.7Mn 합금의 미세조직, 고온 변형 거동 및 성형성)

  • Kang, T.H.;Huang, Y.;Shin, Y.C.;Choi, H.J.;Roh, H.R.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.365-375
    • /
    • 2022
  • The microstructure and high-temperature plastic deformation behavior of the modified Al-0.7Mn alloy were investigated and compared with the conventional Al-0.3Mn (Al3102) alloy. α-Al (matrix) and Al6(Mn, Fe) phases were identified in both alloys. As a result of microstructure observation, both alloys showed equiaxed grains, and Al-0.7Mn alloy showed larger grain size and higher Al6(Mn, Fe) fraction than Al-0.3Mn alloy. High temperature compressive tests, the deformation temperatures of 410℃, 450℃, 490℃, 530℃ and strain rats of 10-2/s, 10-1/s, 1/s, 10/s, were conducted using Gleeble equipment. The flow stress values of Al-0.7Mn alloy were higher than that of Al-0.3Mn alloy at all strain rates and temperature conditions. Constitutive equations were presented using the flow stresses obtained from experimental results and the Zener-Hollomon parameter. In the true stress-true strain curves of the two alloys, the experimental and predicted values were in good agreement with each other. Based on the dynamic material model, eutectic deformation maps of Al-0.7Mn and Al-0.3Mn alloys were suggested, and the plastic instability region was presented. The modified Al-0.7Mn alloy showed a wider plastic instability region than that Al-0.3Mn alloy. Based on the process deformation maps, the MPE tube parts could be manufactured through the actual extrusion process using the suggested conditions.

Effects of Concentration of Precipitants and Aging Time on Synthesis of Mn-Substituted Barium Hexaaluminates by Homogeneous Precipitation (균일용액침전법을 이용한 침전제의 농도와 합성 시간에 따른 Mn이 대체된 바륨 헥사알루미네이트의 합성의 영향)

  • Park, Ji Yun;Jung, You Shick;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.349-355
    • /
    • 2018
  • $BaMnAl_{11}O_{19}$ was prepared by urea-induced homogeneous precipitation and characterized by X-ray diffraction and scanning electron microscopy. At increased precipitant concentrations, AlOOH replaced $Al(OH)_3$ as an Al precursor. $BaMnAl_{11}O_{19}$ exhibited enhanced catalytic combustion performance and inhibited CO generation. Catalytic performance was also enhanced by the presence of $BaAl_2O_4$ and $BaMnAl_{11}O_{19}$. Compared to $BaAl_2O_4$, $BaMnAl_{11}O_{19}$ exhibited superior catalytic combustion activity.

The Effects of Mn and Cr Additions on the Microstructure of A356 Alloys Containing Impure Fe (불순 Fe를 함유한 A356 주조합금에서 미세조직 형성에 관한 Mn과 Cr의 효과)

  • Han, Sang-Won
    • Journal of Korea Foundry Society
    • /
    • v.25 no.3
    • /
    • pp.128-133
    • /
    • 2005
  • The effects of Mn and Cr on the crystallization behaviors of Fe-bearing intennetallics in A356 alloy were studied. Coarse and acicular ${\beta}-Al_{5}$FeSi phase in A356-0.20wt.%Fe alloy was modified into small ${\alpha}$-Al(Fe,Mn)Si and ${\alpha}$-Al(Fe,Cr)Si phases in response to Mn and Cr addition, respectively. Increasing of Mn addition amount elevates the crystallizing temperature of ${\alpha}$-Al(Fe,Mn)Si and the Mn/Fe ratio in the ${\alpha}$-Al(Fe,Mn)Si. Cr is more effective to modify ${\beta}-Al_{5}$FeSi in comparison with Mn. ${\alpha}$-Al(Fe,Mn)Si phase had BCC/SC dual structure.

Ferromagnetism of Chalcopyrite AlGaAs2:Mn Quaternary Alloys (4원 합금 AlGaAs2:Mn의 강자성)

  • Kang, Byung-Sub
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.666-671
    • /
    • 2020
  • The electronic structure and magnetic properties of chalcopyrite (CH) AlGaAs2 with dopant Mn at 3.125 and 6.25 % concentrations are investigated using first-principles calculations. The CH AlGaAs2 alloy is a p-type semiconductor with a small band-gap. The AlGaAs2:Mn shows that the ferromagnetic (FM) state is the most energetically favorable one. The Mn-doped AlGaAs2 exhibits FM and strong half-metallic ground states.The spin polarized Al(Ga,Mn)As2 state (Al-rich system) is more stable than the (Al,Mn)GaAs2 state (Ga-rich system), which has a magnetic moment of 3.82mB/Mn. The interaction between Mn-3d and As-4p states at the Fermi level dominates the other states.The states at the Fermi level are mainlyAs-4p electrons, which mediate strong interaction between the Mn-3d and As-4p states. It is noticeable that the FM ordering of dopant Mn with high magnetic moment originates from the As(4p)-Mn(3d)-As(4p) hybridization, which is attributed to the partially unfilled As-4pbands. The high FM moment of Mn is due to the double-exchange mechanism mediated by valence-band holes.

Electrochemical Performances of LiMn2O4:Al Synthesized by Solid State Method (고상법으로 합성한 LiMn2O4:Al의 전기화학적 특성)

  • Park, Hye-Jung;Park, Sun-Min;Roh, Gwang-Chul;Han, Cheong-Hwa
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.531-536
    • /
    • 2011
  • Al doped $LiMn_2O_4$ ($LiMn_2O_4:Al$) synthesized by several Al doping process and Solid State method. The Al contents in $Mn_{1-x}Al_xO_2$ for $LiMn_2O_4:Al$ were analyzed 1.7 wt% by EDS. The $LiMn_2O_4:Al$ confirmed cubic spinel structure and approximately 5 ${\mu}m$ particles regardless of three kinds of doping process by solid state method. In the result of electrochemical performances, initial discharge capacity had 115 mAh/g in case of $LiMn_2O_4$ and 111 mAh/g of $LiMn_2O_4:Al$ after 100th cycle at room temperature. But the capacity retention results showed that $LiMn_2O_4$ and $LiMn_2O_4:Al$ were 44% and 69% respectively in the 100th cycle at 60$^{\circ}C$. Therefore we are confirmed that $LiMn_2O_4:Al$ increased the capacity retention about 25% than $LiMn_2O_4$, thus the effect of Al dopping on $LiMn_2O_4$ capacity retention.

Effect of Fe, Mn Content on the Castability in Al-9wt%Si-Mg System Alloys for High Elongation (고신율 금형주조용 Al-9wt%Si-Mg계 합금의 주조특성에 미치는 Fe, Mn함량의 영향)

  • Kim, Heon-Joo;Jeong, Chang-Yeol
    • Journal of Korea Foundry Society
    • /
    • v.33 no.6
    • /
    • pp.233-241
    • /
    • 2013
  • Effect of Fe and Mn contents on the castability of Al-9wt%Si-xMg-yFe-zMn alloy has been studied. The alloy was composed of ${\alpha}$-Al phase, Al+eutectic Si phase, ${\beta}$-Al5FeSi compound and chinese script ${\alpha}$-$Al_{15}(Mn,Fe)_3Si_2$ compound. ${\beta}$-$Al_5FeSi$ and ${\alpha}$-$Al_{15}(Mn,Fe)_3Si_2$ compounds assumed to effect the fluidity and shrinkage behaviors of the alloy during solidification due to the crystallization of ${\alpha}$-$Al_{15}(Fe,Mn)_3Si_2$ and ${\beta}$-$Al_5FeSi$ compounds above eutectic temperature. As Fe and Mn contents of Al-9wt%Si-0.3wt%Mg system alloy increased from 0.15wt% to 0.6wt% and from 0.3wt% to 0.7wt%, fluidity of the alloy decreased by 5.7% and 3.3%, respectively. And as Mg content of Al-9wt%Si-0.45wt%Fe-0.5wt%Mn system alloy increased from 0.3wt% to 0.4wt%, fluidity of the alloy decreased by 8.6%. When Fe content of the alloy increased from 0.15wt% to 0.6wt%, macro shrinkage ratio decreased from 6.1% to 4.1%, and micro shrinkage ratio increased from 0.04% to 0.24%. Similarly, Mn content of the alloy increased from 0.3wt% to 0.7wt%, macro shrinkage ratio decreased from 6.0% to 4.5% and micro shrinkage ratio increased from 0.12% to 0.18%. Judging from the castability of the alloy, Al-9wt%Si-0.3wt%Mg alloy with low content of Fe and Mn, 0.1wt% Fe and 0.3wt% Mn, is recommendable.

Hydrothermal synthesis of $(Li,Al)MnO_2(OH)_2$:Co compound (수열법에 의한 $(Li,Al)MnO_{2}(OH)_{2}$:Co 화합물의 합성)

  • 최종건;황완인;김판채
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.4
    • /
    • pp.154-159
    • /
    • 2001
  • (Li,Al)$MnO_2(OH)_2$:Co compound was synthesized by hydrothermal method. $MnO_2$, LiOH.$H_2$O, $Co_3O_4$ and $Al(OH)_3$ were used as starting materials and the optimum conditions for synthesis of monolithic (Li,Al)$MnO_2(OH)_2$:Co compound were as follows : reaction temperature; $200^{\circ}C$, reaction time; 3 days, hydrothermal solvent; 3M-KOH solution, reaction apparatus; seesaw type, atomic ratio of Li:Al:Mn;Co = 1:2.1:2.5~2:0.5~1. Monolithic(Li,Al)$MnO_2(HO)_2$:Co compound synthesized in this work had a god crystallinity and excellent color forming effect as a blue pigment compatible with natural mineral. The particles of the synthesized (Li,Al)$MnO_2(OH)_2$:Co compound have hexagonal plate shape with the size of 0.5~1 $\mu\textrm{m}$.

  • PDF

Effect of Fe, Mn Content on the Tensile Property of Al-4 wt%Mg-0.9 wt%Si Alloy System for High Pressure Die Casting (고압 금형 주조용 Al-4 wt%Mg-0.9 wt%Si계 합금의 인장특성에 미치는 Fe, Mn함량의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.33 no.3
    • /
    • pp.103-112
    • /
    • 2013
  • Effect of Fe and Mn contents on the tensile properties of Al-4 wt%Mg-0.9 wt%Si alloy system has been studied. Common phases of Al-4 wt%Mg-0.9 wt%Si alloy system were ${\alpha}$-Al, $Mg_2Si$, ${\alpha}-Al_{12}(Fe,Mn)_3Si$ and ${\beta}-Al_5FeSi$. As Fe content of Al-4 wt%Mg-0.9 wt%Si alloy system increased from 0.15 wt% to above 0.3 wt%, ${\beta}-Al_5FeSi$ compound appeared. When Mn content of the alloy increased from 0.3 wt% to 0.5 wt%, morphology of plate shaped ${\beta}-Al_5FeSi$ compound changed to chinese script ${\alpha}-Al_{12}(Fe,Mn)_3Si$. As Fe content of Al-4 wt%Mg-0.9 wt%Si-0.3 wt%Mn alloy increased from 0.15 wt% to 0.4 wt%, tensile strength of the as-cast alloy decreased from 191 MPa to 183 MPa and, elongation of the alloy also decreased from 8.0% to 6.2%. Decrease of these properties can be explained as the formation of plate shape, ${\beta}-Al_5FeSi$ phase with low Mn/Fe ratio of the alloy. However, when Mn content of Al-4 wt%Mg-0.9 wt%Si-0.3 wt%Fe alloy increased from 0.3 wt% to 0.5 wt%, tensile strength of as-cast alloy increased from 181 MPa to 194 MPa and, elongation of the alloy increased from 6.8% to 7.0%. These improvements attribute to the morphology change from ${\beta}-Al_5FeSi$ phase to chinese script, ${\alpha}-Al_{15}(Fe,Mn)_3Si_2$ phase shape-modified from with high Mn/Fe ratio of the alloy.