This pot experiment was. conducted to investigate the effects of systematic variation application of Fe, Mn, Cu, and Zn on forage performance of orchardgrass and white clover. The treatments of systematic variation were 0/100, 25/75, 50/50, 75/25, and 100/0% in the Fe/Cu(trial-1), Mn/Zn(trial-2), and Fe + Cu/Mn + Zn(trial-3), respectively. The treatments of Fe/Mn/Cu/Zn(trial-4) were composed of 70% in main element and 10% in other 3 elements, respectively. 1. In general, the unbalanced applications of Fe and Mn resulted in the Mn and Fe deficiencies(chlorosis) on white clover, respectively, because of the antagonism between Fe and Mn. In white clover, the traits of growth, root/nodule, and flowering, which were influenced by the systematic variation of Fe, Mn, Cu, and Zn, were closely correlated to each other. In the Fe/Cu trial, the 0/100 and 25/75 induced a Fe-deficiency on white clover, and the 0/100 also showed poor root growth and flowering. In addition, the 50/50 and 75/25 showed an early flowering of white clover. 2. In the Mn/Zn trial, the 0/100 induced a severe Mn-deficiency(chlorosis) on white clover. The 25/75 and 50/50, however, diminished the chlorosis symptom. The 75/25 and 100/0 showed generally good root growth and flowering of white clover. 3. In the Fe + Cu/Mn + Zn trial, the 0/100 induced a Fe-deficiency, and the 100/0 induced a Mn-deficiency on white clover, which were correlated to the poor root growth and flowering. The 75/25 showed good root growth and flowering of white clover. 1be flowering of white clover tended to be more influenced by the Fe + Cu than by the Mn + Cu ratios. 4. In the Fe/Mn/Cu/Zn trial, the Fe and Mn deficiencies on white clover, which were influenced by the Mn and Fe treatments, also occurred. The Cu and Zn-deficiency symptoms, however, were not recognized. General differences have been showed in the numbers of flowers as following orders; Zn > Cu > Mn > Fe - 70% treatments.