• 제목/요약/키워드: Mn doping

검색결과 171건 처리시간 0.027초

무기 ELD용 ZnS:Mn,Cu,Cl 형광체의 광학적 특성 연구 (Optical Properties of ZnS:Mn,Cu,Cl Phosphor for Inorganic ELD)

  • 이학수;곽지혜;한상도;한치환;김정덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.424-425
    • /
    • 2006
  • Zinc sulfide is a well-known host material of phosphor emitting different radiations dependent on different doping impurities of metallic ion. It emits green, blue, orange-yellow or white colors by doping with activators such as copper, silver, manganese and so on. In this study, manganese, copper and chlorine doped ZnS phosphor (ZnS:Mn,Cu,Cl) was synthesized by solid-state reaction method. The optical properties were investigated according to different concentrations of sulfur and activators used during the synthesis process.

  • PDF

Doping a metal (Ag, Al, Mn, Ni and Zn) on TiO2 nanotubes and its effect on Rhodamine B photocatalytic oxidation

  • Gao, Xinghua;Zhou, Beihai;Yuan, Rongfang
    • Environmental Engineering Research
    • /
    • 제20권4호
    • /
    • pp.329-335
    • /
    • 2015
  • The effects of ion-doping on $TiO_2$ nanotubes were investigated to obtain the optimal catalyst for the effective decomposition of Rhodamine B (RB) through UV photocatalytic oxidation process. Changing the calcination temperature, which changed the weight fractions of the anatase phase, the average crystallite sizes, the BET surface area, and the energy band gap of the catalyst, affected the photocatalytic activity of the catalyst. The ionic radius, valence state, and configuration of the dopant also affected the photocatalytic activity. The photocatalytic activities of the catalysts on RB removal increased when $Ag^+$, $Al^{3+}$ and $Zn^{2+}$ were doped into the $TiO_2$ nanotubes, whereas such activities decreased as a result of $Mn^{2+}$ or $Ni^{2+}$ doping. In the presence of $Zn^{2+}$-doped $TiO_2$ nanotubes calcined at $550^{\circ}C$, the removal efficiency of RB within 50 min was 98.7%.

졸-겔법으로 제조한 Zn2SiO4:Mn, M(M=Cr, Ti) 녹색 형광체의 발광특성 (Luminescence Properties of Zn2SiO4:Mn, M(M=Cr, Ti) Green Phosphors Prepared by Sol-gel Method)

  • 안중인;한정화;박희동
    • 한국세라믹학회지
    • /
    • 제40권7호
    • /
    • pp.637-643
    • /
    • 2003
  • PDP(Plasma Display Panel)용 녹색 형광체의 발광특성과 결정성을 향상시키기 위해 Zn$_2$SiO$_4$:Mn에 co-dopant로 Cr과 Ti 를 각각 첨가하여 졸-겔법으로 합성하였다. 이렇게 합성된 Zn$_2$SiO$_4$:Mn, M(M=Cr, Ti) 형광체는 고상반응의 경우와 비교하여 상대적으로 낮은 온도인 110$0^{\circ}C$에서 willemite 구조의 단일상이 형성되었다. 제조된 Zn$_2$SiO$_4$:Mn, M(M=Cr, Ti) 형광체에 대하여 진공자외선(Vacuum Ultraviolet, VUV) 영역의 147 nm 여기광원을 사용하여 발광특성을 조사하였다. Co-dopant의 영향을 알아보기 위해 Mn의 농도는 2 ㏖%, $H_2O$/TEOS의 비율은 36.1로 고정하였고, 이때 Cr과 Ti 모두 0.1 ㏖%에서 가장 좋은 발광특성을 나타냈다. Cr이 co-doping된 경우는 농도가 증가할수록 잔광시간은 짧아지나 발광강도는 지속적으로 감소한 반면, Ti를 co-doping했을 때는 오히려 낮은 농도에서 발광강도의 증가를 보이며 2.0 ㏖%에서 급격히 감소하였다.

Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3 세라믹스의 압전특성에 미치는 Al2O3의 영향 (Effects of Al2O3 on the Piezoelectric Properties of Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3 Ceramics)

  • 김미정;김재창;김영민;어순철;김일호
    • 한국재료학회지
    • /
    • 제15권7호
    • /
    • pp.453-457
    • /
    • 2005
  • Piezoelectric properties of $Pb(Mn_{1/3}Nb_{2/3})O_3-PbZrO_3-PbTiO_3$ ceramics were investigated with $Al_2O_3$ content $(0.0-1.0 wt\%)$. The constituent phases, microstructure, electromechanical coupling factor, dielectric constant, piezoelectric charge and voltage constants were analyzed. Diffraction peaks for (002) and (200) planes were identified by X-ray diffractometer for all the specimens doped with $Al_2O_3$, indicating the MPB (morphotropic phase boundary) composition of tetragonal structures. The highest sintered density of $7.8 g/cm^3$ was obtained for $0.2wt\%\;Al_2O_3-doped$ specimen. Grain size increased by doping $Al_2O_3$ up to $0.3 wt\%$, and it decreased by more doping. Electromechanical coupling factor, dielectric constant, piezoelectric charge and voltage constants increased by doping $Al_2O_3$ up to $0.2wt\%$, and it decreased by more doping. This might result from the formation of oxygen vacancies due to defects in $O^{2-}$ ion sites and the substitution of $Al^{3+}$ ions.

Synergy Effect of K Doping and Nb Oxide Coating on Li1.2Ni0.13Co0.13Mn0.54O2 Cathodes

  • Kim, Hyung Gi;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.377-386
    • /
    • 2021
  • The Li-rich oxides are promising cathode materials due to their high energy density. However, characteristics such as low rate capability, unstable cyclic performance, and rapid capacity fading during cycling prevent their commercialization. These characteristics are mainly attributed to the phase instability of the host structure and undesirable side reactions at the cathode/electrolyte interface. To suppress the phase transition during cycling and interfacial side reactions with the reactive electrolyte, K (potassium) doping and Nb oxide coating were simultaneously introduced to a Li-rich oxide (Li1.2Ni0.13Co0.13Mn0.54O2). The capacity and rate capability of the Li-rich oxide were significantly enhanced by K doping. Considering the X-ray diffraction (XRD) analysis, the interslab thickness of LiO2 increased and cation mixing decreased due to K doping, which facilitated Li migration during cycling and resulted in enhanced capacity and rate capability. The K-doped Li-rich oxide also exhibited considerably improved cyclic performance, probably because the large K+ ions disturb the migration of the transition metals causing the phase transition and act as a pillar stabilizing the host structure during cycling. The Nb oxide coating also considerably enhanced the capacity and rate capability of the samples, indicating that the undesirable interfacial layer formed from the side reaction was a major resistance factor that reduced the capacity of the cathode. This result confirms that the introduction of K doping and Nb oxide coating is an effective approach to enhance the electrochemical performance of Li-rich oxides.

고체전해질형 연료전지용 Pr1-xMxMnO3(M-Ca, Sr) 산소극 재료의 특성 (Characteristics of Pr1-xMxMnO3(M=Ca, Sr) as a Cathode Material of Solid Oxide Fuel Cell)

  • 임형렬;정순기;이주성
    • 공업화학
    • /
    • 제7권6호
    • /
    • pp.1125-1131
    • /
    • 1996
  • 고체전해질형 연료전지의 산소극 재료로서 페롭스카이트 구조를 갖는 $PrMnO_3$에 Ca과 Sr을 도핑시켜 도핑량에 따른 전기전도도, 산소환원과전압 등의 전기화학적 특성과, 전해질인 yttria stabilized zirconia와의 반응성 그리고 열 팽창률 등을 살펴 보았다. 합성된 페롭스카이트 분말은 대략 $2{\sim}5{\mu}m$의 평균입자 크기를 나타내었는데 이때 입자크기 및 비표면적은 도핑량과 무관하였다. Ca이 30mo1% 도핑되었을 때 전기전도도는 $1000^{\circ}C$에서 $266S{\cdot}cm^{-1}$로 가장 높은 값을 나타내었고, 분극을 통해 살펴 본 산소환원특성도 Ca이 30mol% 도핑되었을 때 가장 우수한 특성을 나타내었다. 전극물질과 전해질인 YSZ를 $1200^{\circ}C$에서 100시간 동안 반응시킨 결과 $PrMnO_3$에 Sr을 도핑시켰을 때보다 Ca을 도핑시킨 것이 반응성이 훨씬 약한 결과를 나타내었다. $Pr_{0.7}Ca_{0.3}MnO_3$의 열팽창계수는 $300{\sim}1000^{\circ}C$의 영역에서 $1.19{\times}10^{-5}K^{-1}$로 측정되었고 이 값은 YSZ의 열팽창계수 $1.15{\times}10^{-5}K^{-1}$과 유사한 값이었다.

  • PDF

MnO2첨가가 Y2O3 doped BaTiO3 반도체 세라믹스의 소결 및 PTCR특성에 미치는 영향 (Effect of MnO2 Addition on Sintering and PTCR Properties in Y2O3 doped BaTiO3 Semiconducting Ceramics)

  • 이준형;박금덕;김정주;조상희
    • 한국세라믹학회지
    • /
    • 제27권1호
    • /
    • pp.7-12
    • /
    • 1990
  • The influence of MnO2 on the sintering property and PTCR behavior of(Ba0.8Sr0.2)TiO2 has been investigated. And the densities, grain sizes and electrical resitivities of specimens were measured as a function of doping with Mn ion of varying concentration. The density and grain size of the sintered specimens were almost the same regardless of MnO2 addition up to 0.2mol% MnO2. But in the case of 0.25mol% MnO2 addition, abnormal grain growth was appeared. So the grain size distribution was wide and density decreased greatly. The room-temperature resistivity increased as Mn content increased and the temperature coefficient of resistivity was highest in the case of 0.15mol% MnO2 addition.

  • PDF

(Zn1-xMgx)2SiO4:mn 형광체의 제조와 발광특성 (Preparation and Luminescent Properties of (Zn1-xMgx)2SiO4:mn Phosphors)

  • 이지영;유일
    • 한국전기전자재료학회논문지
    • /
    • 제22권5호
    • /
    • pp.415-418
    • /
    • 2009
  • $Zn_{2}SiO_{4}$:Mn green phosphors doped with Mg for PDP were synthesized by solid state reaction method. $Zn_{2}SiO_{4}$:Mn, Mg phosphors with increasing Mg concentration were changed from Rhombohedral to Orthorhombic structure. Photoluminescence intensity of $Zn_{2}SiO_{4}$:Mn phosphors doped with Mg 0.5 mol was definitely higher than that of Mg non-doped sample. The enhanced luminescence with doping Mg in the $Zn_{2}SiO_{4}$:Mn phosphors was interpreted by the increase of energy transfer from host to Mn ions with substitution Mg for Zn in the $Zn_{2}SiO_{4}$:Mn host.

Room-temperature Magnetotransport in Degenerately Doped GaAs:(Mn,Be) by Virtue of the Embedded Ferromagnetic Clusters

  • Yu, Fu-Cheng;Kim, Do-Jin;Kim, Hyo-Jin;Ihm, Young-Eon
    • Journal of Magnetics
    • /
    • 제10권3호
    • /
    • pp.103-107
    • /
    • 2005
  • Magnetotransport is a prerequisite to realization of electronic operation of spintronic devices and it would be more useful if realized at room temperature. The effects of Be codoping on GaMnAs on magnetotransport were investigated. Mn flux was varied for growth of precipitated GaMnAs layers under a Be flux for degenerate doping via low-temperature molecular beam epitaxy. Magnetotransport as well as ferromagnetism at room temperature were realized in the precipitated GaAs:(Mn,Be) layers. Codoping of Be was shown to promote formation of MnGa clusters, and annealing process further stabilized the cluster phases. The room-temperature magnetic properties of the layers originate from the ferromagnetic clusters of MnGa and MnAs embedded in GaAs. The degenerately doped metallic GaAs matrix allowed the visualization of the magnetotransport through anomalous Hall effect.