• Title/Summary/Keyword: Mn and Cu addition

Search Result 216, Processing Time 0.024 seconds

Effects of Fe and Si Additions on the Ageing Behaviors for High Strength Al-Cu-Mn-Ti-Zr-Cd Casting Alloys (Fe과 Si의 첨가가 주조용 고강도 Al-Cu-Mn-Ti-Zr-Cd 합금의 시효경화거동에 미치는 영향)

  • Kim, Chul-Hyo;Lee, Jeong-Moo;Kim, Kyung-Hyun;Kim, In-Bae
    • Journal of Korea Foundry Society
    • /
    • v.24 no.1
    • /
    • pp.45-51
    • /
    • 2004
  • Fe and Si are common impurity elements in the aluminum alloys. In this investigation, the effects of the addition of Fe and Si on the age-hardening behaviors of the Al-Cu-Mn-Ti-Zr-Cd casting alloys were examined through hardness measurements, calorimetric techniques and observation of the transmission electron microscopy. The addition of Fe depresses the formation of GPII and ${\theta}'$, and thus retards the peak aging time and reduces the peak hardness of the Al-Cu-Mn-Ti-Zr-Cd alloys. On the contrary, the addition of Si accelerates the formation of GPII and ${\theta}'$ and thus accelerates age-hardening behaviors of the Al-Cu-Mn-Ti-Zr-Cd alloys.

Influence of Cu and Ni on Ductile-Brittle Transition Behavior of Metastable Austenitic Fe-18Cr-10Mn-N Alloys (준안정 오스테나이트계 Fe-18Cr-10Mn-N 합금의 연성-취성 천이 거동에 미치는 Cu와 Ni의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.385-391
    • /
    • 2013
  • The influence of Cu and Ni on the ductile-brittle transition behavior of metastable austenitic Fe-18Cr-10Mn-N alloys with N contents below 0.5 wt.% was investigated in terms of austenite stability and microstructure. All the metastable austenitic Fe-18Cr-10Mn-N alloys exhibited a ductile-brittle transition behavior by unusual low-temperature brittle fracture, irrespective of Cu and/or Ni addition, and deformation-induced martensitic transformation occasionally occurred during Charpy impact testing at lower temperatures due to reduced austenite stability resulting from insufficient N content. The formation of deformation-induced martensite substantially increased the ductile-brittle transition temperature(DBTT) by deteriorating low-temperature toughness because the martensite was more brittle than the parent austenite phase beyond the energy absorbed during transformation, and its volume fraction was too small. On the other hand, the Cu addition to the metastable austenitic Fe-18Cr-10Mn-N alloy increased DBTT because the presence of ${\delta}$-ferrite had a negative effect on low-temperature toughness. However, the combined addition of Cu and Ni to the metastable austenitic Fe-18Cr-10Mn-N alloy decreased DBTT, compared to the sole addtion of Ni or Cu. This could be explained by the fact that the combined addition of Cu and Ni largely enhanced austenite stability, and suppressed the formation of deformation-induced martensite and ${\delta}$-ferrite in conjunction with the beneficial effect of Cu which may increase stacking fault energy, so that it allows cross-slip to occur and thus reduces the planarity of the deformation mechanism.

Effect of MnO2 and CuO Addition on Microstructure and Piezoelectric Properties of 0.96(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3-0.04BaZrO3 Ceramics

  • Cho, Kyung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.150-154
    • /
    • 2019
  • This study investigates the effect of MnO2 and CuO as acceptor additives on the microstructure and piezoelectric properties of $0.96(K_{0.5}Na_{0.5})_{0.95}Li_{0.05}Nb_{0.93}Sb_{0.07}O_3-0.04BaZrO_3$, which has a rhombohedral-tetragonal phase boundary composition. $MnO_2$ and CuO-added $0.96(K_{0.5}Na_{0.5})_{0.95}Li_{0.05}Nb_{0.93}Sb_{0.07}O_3-0.04BaZrO_3$ ceramics sintered at a relatively low temperature of $1020^{\circ}C$ show a pure perovskite phase with no secondary phase. As the addition of $MnO_2$ and CuO increases, the sintered density and grain size of the resulting ceramics increases. Due to the difference in the amount of oxygen vacancies produced by B-site substitution, Cu ion doping is more effective for uniform grain growth than Mn ion doping. The formation of oxygen vacancies due to B-site substitution of Cu or Mn ions results in a hardening effect via ferroelectric domain pinning, leading to a reduction in the piezoelectric charge coefficient and improvement of the mechanical quality factor. For the same amount of additive, the addition of CuO is more advantageous for obtaining a high mechanical quality factor than the addition of $MnO_2$.

Effect of Sn Addition on the Fatigue Properties of Al-Cu-Mn Cast Alloy (Al-Cu-Mu 주조합금의 피로성질에 미치는 Sn 첨가의 영향)

  • Kim, Kyung-Hyun;Kim, Jeung-Dae;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.248-253
    • /
    • 2002
  • Effect of Sn addition on the fatigue properties of Al-Cu-Mn cast alloy was investigated by low and high cycle fatigue tests. Fatigue life showed the maximum value of 5450cycles in the Al-Cu-Mn alloy containing 0.10%Sn, but decreased rapidly beyond 0.20% of Sn additions. It was found that the fatigue strength was 132MPa and fatigue ratio was 0.31 in the alloy containing 0.10%Sn. Metallographic observation revealed that the fatigue crack initiated at the surface and propagated along the grain boundary. This propagation path was attributed to the presence of PFZ along the grain boundary. The tensile strength increased from 330MPa in 7he Sn-free Al-Cu-Mn cast alloy to 429MPa in the alloy containing 0.10%Sn. But above 0.20%Sn additions, tensile strength was decreased by the segregation of Sn.

Characterization of Low Temperature Selective Catalytic Reduction over Ti Added Mn-Cu Metal Oxides (Ti가 첨가된 Mn-Cu 혼합산화물을 이용한 저온 SCR 반응 특성)

  • Lee, Hyun Hee;Park, Kwang Hee;Cha, Wang Seog
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.599-604
    • /
    • 2013
  • In this study, Ti added Mn-Cu mixed oxide catalysts were prepared by a co-precipitation method and used for the low temperature (< $200^{\circ}C$) selective catalytic reduction (SCR) of NOx with $NH_3$. Physicochemical properties of these catalysts were characterized by BET, XRD, XPS, and TPD. Mn-Cu mixed oxide catalysts were found to be amorphous with a large surface and they showed high SCR activity. Experimental results showed that the addition of $TiO_2$ to Mn-Cu oxide enhanced the SCR activity and $N_2$ selectivity. Ti addition led to the chemically adsorbed oxygen species that promoted the oxidation of NO to $NO_2$ and increased the number of $NH_3$ adsorbed-sites such as $Mn^{3+}$.

The effects of Zr on the mechanical workability in Cu-Ni-Mn-Sn connector alloys (커넥터용 Cu-Ni-Mn-Sn계 합금의 가공성에 미치는 Zr 첨가효과)

  • Han, Seung-Zeon;Kong, Man-Shik;Kim, Sang-Shik;Kim, Chang-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.246-249
    • /
    • 2000
  • The effects of Zr on the mechanical workability and tensile strength of Cu-Ni-Mn-Sn-Al alloys have been investigated and the following results were obtained. The mechanical workability of Cu-Ni-Mn-Sn-Al alloys are increased with addition of Zr. And the surface cracks of specimen were not produced in Zr added Alloys. Especially in condition of hot-worked beyond the 90% working ratio, Zr contained specimen showed intra-granule crack propagation but Zr-free specimen showed inter-granule mode. The tensile strength have maximum value in 0.05% Zr contained alloy. The aging mechanism of Cu-Ni-Mn-Sn-Al alloys were varied by Zr addition.

  • PDF

Microstructural Evolution in CuCrFeNi, CuCrFeNiMn, and CuCrFeNiMnAl High Entropy Alloys

  • Hyun, Jae Ik;Kong, Kyeong Ho;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.45 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • In the present study, microstructural evolution in CuCrFeNi, CuCrFeNiMn, and CuCrFeNiMnAl alloys has been investigated. The as-cast CuCrFeNi alloy consists of a single fcc phase with the lattice parameter of 0.358 nm, while the as-cast CuCrFeNiMn alloy consists of (bcc+fcc1+fcc2) phases with lattice parameters of 0.287 nm, 0.366 nm, and 0.361 nm. The heat treatment of the cast CuCrFeNiMn alloy results in the different type of microstructure depending on the heat treatment temperature. At $900^{\circ}C$ a new thermodynamically stable phase appears instead of the bcc solid solution phase, while at $1,000^{\circ}C$, the heat treated microstructure is almost same as that in the as-cast state. The addition of Al in CuCrFeNiMn alloy changes the constituent phases from (fcc1+fcc2+bcc) to (bcc1+bcc2).

Effect of Cd addition on the Fatigue Properties of Al-Cu-Mn cast alloy (Al-Cu-Mn 주조합금의 피로성질에 미치는 Cd 첨가의 영향)

  • Kim, Gyeong-Hyeon;Lee, Byeong-Hun;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.300-304
    • /
    • 2001
  • Effect of Cd addition on the fatigue properties of Al-Cu-Mn cast alloy was investigated by low and high cycle fatigue tests. With increasing Cd content, fatigue life and tensile strength were increased. It was found that the fatigue strength was 115MPa and the fatigue ratio was 0.31. Metallographic observation revealed that the fatigue crack initiated at the surface and propagated along the grain boundary. This propagation path was attributed to the presence of PFZ along the grain boundary. The tensile strength increased from 330MPa in the Cd-free Al-Cu- Mn cast alloy to 401MPa in the 0.15%Cd-containing alloy.

  • PDF

Effect of Cd Addition on the SCC Properties of Al-Cu-Mn Cast Alloys (Al-Cu-Mn주조합금의 SCC특성에 미치는 Cd첨가의 영향)

  • Lee, Chan-Hui;Kim, Gyeong-Hyeon;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.266-271
    • /
    • 2001
  • Effect of Cd addition on the stress corrosion cracking(SCC) resistance of Al-Cu-Mn cast alloy was investigated by C-ring test and electrical conductivity measurement. With increasing Cd contents, the electrical conductivity and the SCC resistance were increased. The PFZ and coarse precipitates along the grain boundary were observed from TEM micrographs. The fracture made of the alloys was confirmed as intergranular type and showed brittle fracture surface. As a result, it was concluded that the SCC mechanism of these alloys is the anodic dissolution model. The maximum hardness was increased from 127Hv in the Cd-free alloy to 138∼145Hv in the Cd addition alloys.

  • PDF

Solderability and BGA Joint Reliability of Sn-Ag-Cu-In-(Mn, Pd) Pb-free Solders (Sn-Ag-Cu-In-(Mn, Pd) 무연솔더의 솔더링성과 BGA 접합부 신뢰성)

  • Jang, Jae-Won;Yu, A-Mi;Lee, Jong-Hyun;Lee, Chang-Woo;Kim, Jun-Ki
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.53-57
    • /
    • 2013
  • Although the lowering of Ag content in Sn-3.0Ag-0.5Cu is known to improve the mechanical shock reliability of the solder joint, it is also known to be detrimental to the solderbility. In this study, the quaternary alloying effect of In and the minor alloying effects of Mn and Pd on the solderability, thermal cycling and mechanical shock reliabilities of the low Ag content Sn-1.2Ag-0.7Cu solder were investigated using board-level BGA packages. The solderability of Sn-1.2Ag-0.7Cu-0.4In was proved to be comparable to that of Sn-3.0Ag-0.5Cu but its thermal cycling reliability was inferior to that of Sn-3.0Ag-0.5Cu. While the 0.03 wt% Pd addition to the Sn-1.2Ag-0.7Cu-0.4In decreased the solderability and reliabilities of solder joint, the 0.1 wt% Mn addition was proved to be beneficial especially for the mechanical shock reliability compared to those of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.5Cu compositions. It was considered to be due that the Mn addition decreased the Young's modulus of low Ag content Pb-free solders.