• Title/Summary/Keyword: Mixture phenomena

Search Result 225, Processing Time 0.027 seconds

Effect of Fuel Injector-type Spark Plug on Combustion Characteristics

  • Yeom, J.K.;Chung, S.S.
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.171-177
    • /
    • 2009
  • This study proposes a new stratified charge system for low emission and ultra lean burn. In order to examine combustion characteristics of the new system, sparkplug with a hole at positive pole and a common CNG injector for injecting fuel were used in this study as injector-type spark plug. The new stratified charge system injects fuel of extremely small quantities and ignites mixture around sparkplug gap. Also, the system was fitted in a visualized constant volume chamber. Then, for analysis of the combustion characteristics, we examined combustion pressure, lean inflammable limit, and visualized combustion flame according to equivalence ratio by comparison with homogeneous charge (HC) method and the new stratified charge (SC) method. As results of this study, in the case of using this system, the propagation speed of initial flame was increased and total combustion period was reduced in the ultra lean burn in the same equivalence ratio. These phenomena occurred clearly under the conditions of lean equivalence ratio. Furthermore, the lean inflammable limit of mixture was extended by using the injector-type spark plug.

  • PDF

Effects of Condensation Heat Transfer Model in Calculation for KNGR Containment Pressure and Temperature Response

  • Eoh, Jae-Hyuk;Park, Shane;Jeun, Gyoo-Dong;Kim, Moo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.241-253
    • /
    • 2001
  • Under severe accidents, the pressure and temperature response has an important role for the integrity of a nuclear power plant containment. The history of the pressure and temperature is characterized by the amount and state of steam/air mixture in a containment. Recently, the heat transfer rate to the structure surface is supposed to be increased by the wavy interface formed on condensate film. However, in the calculation by using CONTAIN code, the condensation heat transfer on a containment wall is calculated by assuming the smooth interface and has a tendency to be underestimated for safety. In order to obtain the best- estimate heat transfer calculation, we investigated the condensation heat transfer model in CONTAIN 1.2 code and adopted the new forced convection correlation which is considering wavy interface. By using the film tracking model in CONTAIN 1.2 code, the condensate film is treated to consider the effect of wavy interface. And also, it was carried out to investigate the effect of the different cell modelings - 5-cell and 10-cell modeling - for KNGR(Korean Next Generation Reactor) containment phenomena during a severe accident. The effect of wavy interface on condensate film appears to cause the decrease of peak temperature and pressure response . In order to obtain more adequate results, the proper cell modeling was required to consider the proper flow of steam/air mixture.

  • PDF

Prediction of Nucleate Pool Boiling Heat Transfer Coefficients of Ternary Refrigerant R407C

  • Kwak, Kyung-Min;Bai, Cheol-Ho;Chung, Mo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.93-103
    • /
    • 1998
  • The nucleate boiling heat transfer experiments are performed using a ternary refrigerant R407C which is a candidate of alternatives of HCFC 22. The boiling phenomena of R-32, R-125 and R-134a which are the constituent refrigerants of R407C are also investigated. The nucleate boiling heat transfer coefficients of R407C are less than those of HCFC 22 which have the similar physical and transport properties. In our experimental pressure range, which is similar to the operational pressure of air conditioning system, the deterioration of boiling heat transfer coefficients of mixture refrigerant R407C does not appear for moderate wall superheat region. Since nucleate boiling heat transfer coefficients cannot be obtained from ideal mixing law of mixture, Thome's method was used to predict. To account for the heat flux effect and system pressure in Thome's method, the correcting factor, a(P.L1T), was introduced and obtained from experiments for ternary refrigerant R407C.

  • PDF

Thermodynamic Analysis of the Extraction Process and the Cold Energy Utilization of LNG (LNG추출과정과 냉열이용의 열역학적 해석)

  • Lee, G.S.;Chang, Y.S.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.120-131
    • /
    • 1995
  • Thermodynamic analysis of extraction process from the constant pressure LNG(Liquefied Natural Gas) vessel was performed in this study. LNG was assumed as a binary mixture of 90% methane and 10% ethane by mole fraction. The thermodynamic properties such as temperature, composition, specific volume and the amount of cold energy were predicted during extraction process. Pressure as a parameter ranges from 101.3kPa to 2000kPa. The result shows the peculiar phenomena for the LNG as a mixture. Both vapor and liquid extraction processes were investigated by a computer model. The property changes are negligible in the liquid extraction process. For the vapor extraction process, the temperature in the vessel increases rapidly and the extracted composition of methane decreases rapidly near the end of extracting process. Specific volume of vapor has the maximum and that of liquid has the minimum during the process. When pressure is increased, specific volume of vapor decreases and that of liquid increases. It was found that specific volume of vapor phase had a major effect on the heat absorption at constant pressure during vapor extraction process. If the pressure of the vessel increases, the total cold energy which can be utilized from LNG decreased.

  • PDF

A Study on the Emotionality of Digital Culture in Modern Fashion Design (현대 패션디자인에 나타난 디지털 문화의 감성성에 관한 연구)

  • Kim, Ji-Heui;Yoo, Tai-Soon
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.8
    • /
    • pp.1-13
    • /
    • 2007
  • The cold image of digital culture and its realistic limits force modern people to yearn for an emotional world characterized by a warm humanity. The kind of digital technology that appeals to such a human emotion is accepted as a new digital concept in the 21st century. The purpose of this study was to examine the characteristics of emotionality, which was a new trend in digital culture, and to discuss its form and meaning in fashion sector. It's basically meant to figure out a major trend in the 21st century's digital culture, to delve into its relationship with fashion reflecting sociocultural phenomena, and ultimately to describe in which direction future fashion would be led. Emotionality was highlighted as a reaction against an absolute pursuit of speed and cold digital technology. Emotionality of digital culture in fashion design were inserting of funology, Zen-based design and development of a clothing mixture. The emphasis of emotionality in digital culture is a new sociocultural trend that stresses the recovery of human nature. As futurologists predict that a human-centered and humanistic culture will reappear in the 21st century, fashion also will be in pursuit of human-oriented design.

Dynamic Rheological Studies on Mixtures of Hot Pepper-Soybean Paste and Xanthan Gum

  • Choi, Su-Jin;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.146-149
    • /
    • 2007
  • Dynamic rheological properties of hot pepper-soybean paste (HPSP) mixed with xanthan gum were evaluated at different gum concentrations (0.3, 0.6, and 0.9%) and fermentation times (12 and 24 week). Magnitudes of storage (G') and loss moduli (G") in the HPSP-xanthan gum mixture systems increased with an increase in frequency ($\omega$), while complex viscosity (${\eta}^*$) decreased. G' values were higher than the G" values over most of the frequency range (0.63-63 rad/sec), and were frequency-dependent. The dynamic moduli (G', G", and ${\eta}^*$) of the HPSP-xathan mixtures were lower than those of the control (0% gum). The differences between the dynamic moduli values at 12-week and 24-week fermentation decreased with increasing gum concentration, showing that xanthan gum can be used to stabilize and improve the viscoelastic rheological properties of HPSP. The G' value of the HPSP-xathan mixtures increased with an increase in gum concentration from 0.3 to 0.9%, whereas the G" decreased. The ability of xanthan gum to increase the elastic properties in the HPSP-xanthan mixture systems seemed to be the result of the incompatibility phenomena existing between xanthan gum and glutinous rice starch.

A Study on Analysis of Polymer Extruder Process Using Finite Element Method (유한요소법을 이용한 폴리머 압출 공정해석에 관한 연구)

  • Ye Youngsoo;Kim Hongbum;Lee Jaewook;Kim Naksoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.145-155
    • /
    • 2005
  • In this study, a finite element method program code which can be accomodate boundary conditions on the complex surfaces has been developed to simulate polymer extruder processes. The analysis method includes the fractional 4-step method for efficient computation time and compact usage of memory storage to solve the velocities and the pressure values from the Navier-Stokes equation. By using the developed program which was verified with simple Poiseuille flow mixture phenomena in single-and twin-screw extruder are analyzed. It is concluded that the proposed method resulte Poiseuille Poiseuille d in fair agreement with the exact solution of simple flow and the back flow near the entrance happens in single-screw model. It is identified that the location and values of maximum pressure in the twin screw extruder model. It is expected that the Velocity field found can be used to predict the degree of mixture in the extruder barrel.

Development of an ECCS Injection Model By Gravity and Flow Rate Distributions in the Passive Reactor Systems (비상노심냉각수의 중력에 의한 주입 및 피동형노심내의 흐름율 분포모델의 개발)

  • Lim, H.G.;Kim, G.S.;Lee, U.C.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.562-569
    • /
    • 1994
  • In this study improvement of transient analysis model, KOTRAC, for the passive reactor has been performed. In the KOTRAC, mixture drift flux model is adopted to simulate thermal hydraulic behavior, which can simulate ECCS injection in the passive plant. However, there is a difficulty to handle complete phase separation phenomena due to the near-zero density, which may occur in the pressurizer surge line or horizontal flow paths. In this study, a couple of model changes to over-come Courant limit feilure has been examined. One of key features is to substitute flow distribution parameters with Ishii's correlation. Corrected results are nil compared to those of RELAP/MOD3 analysis.

  • PDF

Characteristics of debris resulting from simulated molten fuel coolant interactions in SFRS

  • E. Hemanth Rao;Prabhat Kumar Shukla;D. Ponraju;B. Venkatraman
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.283-291
    • /
    • 2024
  • Sodium cooled Fast Reactors (SFR) are built with several engineered safety features and hence a severe accident such as a core melt accident is hypothetical with a probability of <10-6/ry. However, in case of such accidents, the mixture of the molten fuel and structural materials interacts with sodium. This phenomenon is known as Molten Fuel Coolant Interaction (MFCI) and results in fragmentation of the melt due to various instabilities. The fragmented particles settle as a debris bed on the core catcher at the bottom of the reactor vessel, and continue to generate decay heat. Characteristics of the debris particles play a vital role in heat transfer from the bed and need thorough investigation. The size, shape, and physical state of the debris depend on the associated fragmentation mechanism, superheating of the melt, and sodium temperature. Experiments have been conducted by releasing simulated corium, a molten mixture of alumina and iron generated by the aluminothermy process at ~2400 ℃ into liquid sodium, to study the fragmentation phenomena. After the experiment, the fragmented debris was retrieved and the particle size distribution was determined by sieve analysis. The debris was subjected to microscopic investigation for obtaining morphological characteristics. Based on the characteristics of debris, an attempt has been made to assess of fragmentation mechanism of simulated corium in sodium.

Utrastructural Analysis of the Delignification Behaviour in P-Cresol-Water Solvent Pulping (크레졸-물 용매펄프화의 탈리그닌에 관한 초미세구조적 분석)

  • Kim, Chang-Keun;Jo, Byoung-Muk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.60-71
    • /
    • 1992
  • To investigate the delignification behaviour in solvolysis pulping process, Populus alba ${\times}$ glandulosa H. and Pinus Kuraiensis S. et Z. were cooked with p-cresol and vater solvent(2:8, 5:5, 8:2 v/v) at $175^{\circ}C$ for 9 cooking time levels(20, 40, 60, 80, 100, 120, 140, 160, 180, min). Pulp yield, residual lignin content, de lignification rate, decarborhydration rate were determined. Delignification behaviours were analyzed by TEM. 1. The p-cresol-water solvent cooking of P. alba ${\times}$ glandulosa showed good delignification at the solvent system which the mixture ratio of p-cresol and water were 2:8(v/v), while the cooking of P. koraiensis with the p-cresol and water mixture ratio of 5:5 was no good. 2. P. alba ${\times}$ glandulosa showed three step-delignification phenomena at the solvent system which the mixture ratio of p-cresol and water were 2:8(v/v) anti 5:5(v/v). But P. koraiensis showed a first order delignification reaction at the same mixture ratio of p-cresol and water solvent system. 3. In TEM micrograph obtained for the solvent system which the mixture ratio of p-cresol and water was 5:5(v/v), the partial delignification of the cell corner of P. alba ${\times}$ glandulosa and P. koraiensis were observed at 60min. of cooking time. Complete delignification at the cell corner of P. alba ${\times}$ glandulosa was observed at 160min. and that of P. koraiensis was observed of 180min. of cooking time. 4. In optical microscopic observation, fiber separation of P. alba ${\times}$ glandulosa occured at 120min. and that of P. koraiensis began at 140min. of cooking time. 5. At the solvent system which the mixture ratio of p-cresol and water was 5:5(v/v), middle layer on secondary wall($S_2$) and cell corner of P. alba ${\times}$ glandulosa were more selectively delignified than primary wall(P) and outer layer on secondary wall($S_1$). However P. koraiensis did not showed any difference in delignification between cell wall layers and cell corner.

  • PDF