• 제목/요약/키워드: Mixture experiments

검색결과 960건 처리시간 0.03초

혼합물 실험계획법을 이용한 3성분(Ir-Sn-Sb) 전극의 최적비율 선정 (Selection of Optimum Ratio of 3 Components (Ir-Sn-Sb) Electrode using Design of Mixture Experiments)

  • 박영식
    • 한국환경과학회지
    • /
    • 제25권5호
    • /
    • pp.737-744
    • /
    • 2016
  • For electrolysis process using an insoluble electrode, electrochemical performance was greatly affected by the manufacturing method and procedure, such as the firing temperature, pre-treatment, type of precursor solution, coating method, electrode material, etc. Components of the electrode therein is one of the most important factors in electrochemical reaction. To achieve such characteristics, a appropriate ratio of the electrode material should be carefully chosen. The aim of this research was to apply experimental design method in the optimization of electrode component for the maximum generation of oxidants in electrochemical oxidation process. Mixture design, especially expanded simplex lattice design, in DOME (design of mixture experiments) with Design Expert - commercial software - was used to analyze the data. Analysis of variance (ANOVA) showed a high coefficient of determination ($R^2$) value of 0.9470, thus ensuring a satisfactory adjustment of the $3^{rd}$ order special cubic regression model with the experimental data. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the TRO generation concentration and independent variables(mol ratio of 3 electrode components) in a real unit: TRO generation concentration $(mg/L)=TRO\;conc.=98.25{\times}[Ir]+49.71{\times}[Sn]+95.29{\times}[Sb]-16.91{\times}[Ir]{\times}[Sn]-29.47{\times}[Ir]{\times}[Sb]-22.65{\times}[Sn]{\times}[Sb]+703.19{\times}[Ir]{\times}[Sn]{\times}[Sb]$. The optimized formulation of the 3 component electrode for an high TRO (total residual oxidants) generation was acquired at mol ratio of Ir 0.406, Sn 0.210, Sb 0.384 (desirability d value, 1).

Experimental assessment of thermal radiation effects on containment atmospheres with varying steam content

  • R. Kapulla;S. Paranjape;U. Doll;E. Kirkby;D. Paladino
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4348-4358
    • /
    • 2022
  • The thermal-hydraulics phenomena in a containment during an accident will necessarily include radiative heat transfer (i) within the gas mixture due to the high radiative absorption and emission of steam and (ii) between the gas mixture and the surrounding structures. The analysis of some previous PANDA experiments (PSI, Switzerland) demonstrated the importance of the proper modelling of radiation for the benefit of numerical simulations. These results together with dedicated scoping calculations conducted for the present experiments indicated that the radiative heat transfer is considerable, even for a very low amount of steam (≈2%). The H2P2 series conducted in the large-scale PANDA facility at the Paul-Scherrer-Institut (PSI) in the framework of the OECD/NEA HYMERES-2 project is intended to enhance the understanding of thermal radiation phenomena and to provide a benchmark for corresponding numerical simulations. Thus, the test matrix was tailored around the two opposite extremes: either gas compositions with small steam content such that radiative heat transfer phenomena can be neglected. Or gas mixtures containing larger amounts of steam, so that radiative heat transfer is expected to play a dominant role. The H2P2 series consists of 5 experiments designed to isolate the radiation phenomena from convective and diffusive effects as much as possible. One vessel with a diameter of 4 m and a height of 8 m was preconditioned with different mixtures of air / steam at room and elevated temperatures. This was followed by the build-up of a stable helium stratification at constant pressure in the upper part of the vessel. After that, helium was injected from the top into the vessel which leads to an increase of the vessel pressure and a corresponding elevation-dependent and transient rise of the gas temperature. It is shown that even the addition of small amounts of steam in the initial gas atmosphere considerably impacts the radiative heat transport throughout all phases of the experiments and markedly influences i) the monitored gas peak temperature, ii) the temperature history during the compression and iii) the following relaxation phase after the compression was stopped. These PANDA experiments are the first of its kind conducted in a large scale thermal-hydraulic facility.

Spontaneous Steam Explosions Observed In The Fuel Coolant Interaction Experiments Using Reactor Materials

  • Jinho Song;Park, Ikkyu;Yongseung Sin;Kim, Jonghwan;Seongwan Hong;Byungtae Min;Kim, Heedong
    • Nuclear Engineering and Technology
    • /
    • 제34권4호
    • /
    • pp.344-357
    • /
    • 2002
  • The present paper reports spontaneous steam explosions observed in fuel coolant interaction experiments using prototypic reactor materials. Pure ZrO$_2$ and a mixture of UO$_2$ and ZrO$_2$ are used. A high temperature molten material in the form of a jet is poured into a subcooled water pool located in a pressure vessel. An induction skull melting technique is used for the melting of the reactor material. In both tests using pure ZrO$_2$ and a mixture of UO$_2$ and ZrO$_2$, either a quenching or a spontaneous steam explosion was observed. The morphology of debris and pressure profile clearly indicate the differences between the qunching cases and explosion cases. The dynamic pressure. dynamic impulse, water temperature, melt temperature, and static pressure Inside the containment chamber were measured . As the spontaneous steam explosion for the reactor material is firstly observed in the present experiments, the results of present experiments could be a siginificant step forward the understanding the explosion of the reactor material.

초폭굉속도 램가속기의 정상발진과 불발과정에 대한 수치해석 (Numerical Study of Normal Start and Unstart Processes In a Superdetonative Speed Ram Accelerator)

  • 문귀원;정인석;최정렬
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.123-132
    • /
    • 2002
  • A numerical study was conducted to investigate the combustion phenomena of normal start and unstart processes based on ISL's RAMAC 30 experiments with different diluent amounts and fill pressures in a ram accelerator. The initial projectile launching speed was 1.8 km/s which corresponded to the superdetonative speed of the stoichiometric $H_2/O_2$ mixture diluted with 5 $CO_2$ or 4 $CO_2$. Experiments with same condition except for projectile surface material demonstrated that ignition was successful with an aluminum projectile, but no combustion was observed in case of a steel projectile. In this study, it was found that neither shock nor viscous heating was sufficient to ignite the mixture at a low speed of 1.8 km/s, as was found in the experiments using a steel projectile. However, we could succeed in igniting the mixtures by imposing a minimal amount of additional heat to the combustor section and simulate the normal start and unstart processes found in the experiments with an aluminum projectile. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations coupled with a Baldwin-Lomax turbulence model and detailed chemistry reaction equations of $H_2/O_2/CO_2$ suitable for high-pressure gaseous combustion were considered. The governing equations were discretized by a high order accurate upwind scheme and solved in a fully coupled manner with a fully implicit, time accurate integration method. The numerical results matched almost exactly to the experimental results. As a result, it was found that the normal start and unstart processes depended on the strength of gas mixture, development of shock-induced combustion wave stabilized by the first separation bubble, and its size and location.

  • PDF

과농-희박연료가 교차로 공급되는 상호작용 화염의 화염날림에 관한 연구 (Effect of Lean-rich Fuel Staging to the Multiple Jet Flames on the Blowout Velocity)

  • 이병준;박경욱
    • 대한기계학회논문집B
    • /
    • 제32권1호
    • /
    • pp.7-14
    • /
    • 2008
  • It has been reported that partially premixed interacting flame could be sustained till sonic exit velocities if eight small nozzles are arranged optimally and one nozzle on the center is fed small amount of fuel. But the equivalence ratios in this experiments were 20-60. In this research, experiments were conducted to know the effects of lean-rich staging in multiple jet flames on the blowout velocity. The fuel mole tractions in the fuel-air mixture, the nozzle exit velocity and the diameter between adjacent nozzles were alternatively changed. When the lower mole fraction fuel was fed to the nozzles located near the center and small amount of fuel to the center nozzle, flame was not extinguished even at the nozzle exit velocity of 200m/s. Also the interacting flame could be sustained till that velocity when four small size nozzles for lean mixture were located within the arrangement of four nozzles for rich mixture and configured optimally.

볼밀링에서 볼 배합비 선택을 위한 혼합물 실험계획 및 분석 (Design and Analysis of Mixture Experiments for Ball Mix Selection in the Ball Milling)

  • 김성준;최재영;신현호
    • 품질경영학회지
    • /
    • 제42권4호
    • /
    • pp.579-590
    • /
    • 2014
  • Purpose: Ball milling is a popular process for obtaining fine powders in the part and material industry. One of important issues in the ball milling is to produce particles with a uniform size. Although many factors affect uniformity of particles, this paper focuses on the choice of ball diameter. Consider a ball milling where balls can be taken with three different diameters. The purpose of this paper is to find a ball mix which minimizes the average particle size. Methods: Ball diameters are selected as 10mm, 3mm, and 0.5mm. In order to find an optimum mixing ratio, the method of mixture experiments is employed in this paper. Taguchi's signal-to-noise ratio (SNR) for smaller-the-better type is also used to analyze experimental data. Results: According to the experimental result, SNR is maximized when the ball mix is taken as either 7:3:0 or 6:4:0. Such mixing ratios can be technically validated in terms of porosity reduction. Conclusion: The ball mixing technique presented in this paper provides a useful way to improve the production efficiency with a low cost.

화자독립 음성인식을 위한 GMM 기반 화자 정규화 (Speaker Normalization using Gaussian Mixture Model for Speaker Independent Speech Recognition)

  • 신옥근
    • 정보처리학회논문지B
    • /
    • 제12B권4호
    • /
    • pp.437-442
    • /
    • 2005
  • 화자독립 음성인식기의 화자 정규화를 위해 GMM(Gaussian mixture model)분포를 이용하는 방법에 대해 실험한다. 이 방법은 벡터 양자화기를 이용한 선행 연구를 개선한 것으로, 정규화된 학습용 특징벡터들의 확률분포를 최적의 클러스터의 수를 갖는 GMM분포로 모델링한 다음, 이 분포를 이용하여 시험용화자의 워핑계수를 추정한다. 이 연구의 목적은 기존의 ML을 이용한 방법의 단점을 개선하는 동시에 벡터 양자화기를 이용한 선행연구와'soft decision'이라 불리는 확률 분포를 이용한 방법의 성능을 비교하는데 있다. TIMIT 코퍼스를 대상으로 한 음소 인식 실험에서 클러스터의 수를 적절한 크기로 설정한 GMM분포를 이용함으로써 벡터 양자화기를 이용한 방법에 비해 약간 나은 인식률을 얻을 수 있었다.

정규분포기반 두각 혼합모형의 순환적 적합을 이용한 군집분석에서의 변수선택 (Variable Selection in Clustering by Recursive Fit of Normal Distribution-based Salient Mixture Model)

  • 김승구
    • 응용통계연구
    • /
    • 제26권5호
    • /
    • pp.821-834
    • /
    • 2013
  • Law 등 (2004)은 군집분석에서 변수선택을 위해 정규분포기반 "두각 혼합모형(salient mixture model)"의 사용을 제안하였다. 본 논문에서는 이 모형의 적합 상의 문제점과 변수선택의 결함을 지적하고 그 대안을 제시한다. 모의자료와 실자료를 바탕으로 제안된 방법이 기존의 방법보다 유용함을 보였다.

Model-based Clustering of DOA Data Using von Mises Mixture Model for Sound Source Localization

  • Dinh, Quang Nguyen;Lee, Chang-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권1호
    • /
    • pp.59-66
    • /
    • 2013
  • In this paper, we propose a probabilistic framework for model-based clustering of direction of arrival (DOA) data to obtain stable sound source localization (SSL) estimates. Model-based clustering has been shown capable of handling highly overlapped and noisy datasets, such as those involved in DOA detection. Although the Gaussian mixture model is commonly used for model-based clustering, we propose use of the von Mises mixture model as more befitting circular DOA data than a Gaussian distribution. The EM framework for the von Mises mixture model in a unit hyper sphere is degenerated for the 2D case and used as such in the proposed method. We also use a histogram of the dataset to initialize the number of clusters and the initial values of parameters, thereby saving calculation time and improving the efficiency. Experiments using simulated and real-world datasets demonstrate the performance of the proposed method.

Mechanical properties of Al/Al2O3 and Al/B4C composites

  • Pandey, Vinod K.;Patel, Badri P.;Guruprasad, Siddalingappa
    • Advances in materials Research
    • /
    • 제5권4호
    • /
    • pp.263-277
    • /
    • 2016
  • Mechanical properties of $Al/Al_2O_3$ and $Al/B_4C$ composites prepared through powder metallurgy are estimated up to 50% $Al_2O_3$ and 35% $B_4C$ weight fractions using micromechanics models and experiments. The experimental Young's modulus up to 0.40 weight fraction of ceramic is found to lie closely between Ravichandran's/Hashin-Shtrikman lower/upper bounds, and close to self consistent method/Miller and Lannutti method/modified rule of mixture/fuzzy logic method single value predictions. Measured Poisson's ratio lies between rule of mixture/Ravichandran lower and upper bound/modified Ravichandran upper bounds. Experimental Charpy energy lies between Hopkin-chamis method/equivalent charpy energy/Ravichandran lower limit up to 20%, and close to the reciprocal rule of mixture for higher $Al_2O_3$ content. Rockwell hardness (RB) and Micro-hardness of $Al/Al_2O_3$ are closer to modified rule of mixture predictions.