• 제목/요약/키워드: Mixing zone

검색결과 319건 처리시간 0.032초

산소부화연소에서 Co2 첨가에 대한 연소 특성 (Characteristics for Effects of Co2 Addition to Oxygen-Enriched Combustion)

  • 김한석;김호근;안국영;김용모
    • 대한기계학회논문집B
    • /
    • 제28권1호
    • /
    • pp.9-15
    • /
    • 2004
  • $CO_2$ is a well-known green house gas as well as the major source of global warming. Many researchers have studied to reduce $CO_2$ emission in combustion processes. Among the method for reducing $CO_2$ emission, oxygen-enriched combustion has been proposed. Because its adiabatic flame temperature is relatively too high, existing facilities must be changed or the flame temperature in the combustion zone should be reduced. The combustion characteristics, composition in the flame zone, temperature profile and emission gases were investigated experimentally for the various oxygen-enriched ratios(OER) by the addition of $CO_2$, under constant $O_2$ flow rate. Results showed that the reaction zone was quenched and broadened as the addition of $CO_2$ was increased. The emission of NOx in flue gas was decreased as decreasing temperature in reaction zone. It was also shown that the reaction was delayed by the cooling effect. As the addition of $CO_2$ was increased, the composition of CO in the flame zone was increased due to the increase of reaction rate by increasing mixing effect of oxidant/fuel at OER=0%, but the composition of CO was decreased by quenching effect at OER=50% and 100%.

산소부화연소에서 $CO_2$ 첨가에 대한 영향 (Effects of $CO_2$ addition to Oxygen-Enriched Combustion)

  • 김호근;김한석;안국영;김용모
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1389-1394
    • /
    • 2003
  • $CO_2$ is a well-known green house gas, which is the major source of global warming. Many researchers have studied to reduce $CO_2$ emission in combustion processes. Among the method for reducing $CO_2$ emission, oxygen-enriched combustion has been proposed. But the adiabatic flame temperature is too high. So existing facilities must be changed, or the adiabatic flame temperature in the combustion zone should be reduced. The combustion characteristics, composition in the flame zone, temperature profile and emission gases were studied experimentally for the various oxygen-enriched mtios(OER) by addition of $CO_2$ under coustant $O_2$ flowrate. Results showed that the reaction zone was quenched, broadened, as addition of $CO_2$ was increased. Temperature has a large effect on the NOx emission. The emission of NOx in flue gas decreased due to the decreased temperature of reaction zone. It was also shown that the reaction was delayed by the cooling effect. As the addition of $CO_2$ was increased, the composition of CO in the flame zone increased due to the increase of reaction rate by increasing mixing effect of oxidant/fuel at OER=0, but the composition of CO decreased by quenching effect at OER=50 and 100%.

  • PDF

배치형 내부 사이클론식 순환유동층 연소로내 2차 공기 주입에 의한 슬러지 소각 유해 배가스 저감효과 (Effect of Secondary Air Injection on Emission from Sludge Incineration in a Batch-type Internally Cycloned Circulating Fluidized Bed Combustor)

  • 장석돈;신동훈;황정호
    • 한국연소학회지
    • /
    • 제7권3호
    • /
    • pp.16-22
    • /
    • 2002
  • Combustion performance of an internally cycloned circulating fluidized bed for paper sludge was discussed through a series of batch type experiments. Operation parameters such as water content, feeding mass of sludge and secondary air injection rate were varied to find out the effect on the combustion performance, which was examined with carbon conversion rate and pollutant emission such as CO and NOx. A conventional solid fuel reaction was observed in the experiments of varying water content and feeding mass of the sludge, which is characterized with kinetic limited reaction zone, diffusion limited reaction zone and transition zone. Secondary air injection with swirl enhances the mixing of the gas phase as well as the solid phase, and improves combustion efficiency accompanied with higher carbon conversion rate and lower pollutant emission rate.

  • PDF

MODELING OF DIRECT INJECTION DIESEL ENGINE EMISSIONS FOR A QUASI-DIMENSIONAL MULTI-ZONE SPRAY MODEL

  • Jung, D.;Assanis, D.N.
    • International Journal of Automotive Technology
    • /
    • 제5권3호
    • /
    • pp.165-172
    • /
    • 2004
  • Phenomenological models for direct injection diesel engine emissions including NO, soot, and HC were implemented into a full engine cycle simulation and validated with experimental data obtained from representative heavy-duty DI diesel engines. The cycle simulation developed earlier by Jung and Assanis (2001) features a quasi-dimensional, multi-zone, spray combustion model to account for transient spray evolution, fuel-air mixing, ignition and combustion. In this study, additional models for HC emissions were newly implemented and the models for NO, soot, and HC emissions were validated against experimental data. It is shown that the models can predict the emissions with reasonable accuracy. However, additional effort may be required to enhance the fidelity of models across a wide range of operating conditions and engine types.

Predicting Model for Pore Structure of Concrete Including Interface Transition Zone between Aggregate and Cement Paste

  • Pang, Gi-Sung;Chae, Sung-Tae;Chang, Sung-Pil
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권2호
    • /
    • pp.81-90
    • /
    • 2009
  • This paper proposes a semi analytical model to describe the pore structure of concrete by a set of simple equations. The relationship between the porosity and the microstructure of concrete has been considered when constructing the analytical model. The microstructure includes the interface transition zone (ITZ) between aggregates and cement paste. The predicting model of porosity was developed with considering the ITZ for various mixing of mortar and concrete. The proposed model is validated by the rapid experimental programs. Although the proposed model is semi-analytical and relatively simple, this model could be reasonably utilized for the durability design and adapted for predicting the service life of concrete structures.

동시계측에 의한 난류 미분탄 화염의 순간구조에 관한 연구 (Study on Instantaneous Structure of Turbulent Pulverized Coal Flame by Simultaneous Measurement)

  • 황승민
    • 한국환경과학회지
    • /
    • 제27권5호
    • /
    • pp.309-317
    • /
    • 2018
  • In this study, a laser sheet technique and PLIF (Planar laser-induced fluorescence) are applied to a laboratory-scale pulverized coal burner of the open type, and the spatial relationship of the pulverized coal particle zone and the combustion reaction zone is examined by simultaneous measurement of Mie scattering and OH-LIF images. It is found that this technique can be used to investigate the spatial relationship of the combustion reaction zone and pulverized-coal particles in turbulent pulverized-coal flames without disturbing the combustion reaction field. In the upstream region, the combustion reaction occurs only in the periphery of the clusters where high-temperature burned gas of the methane pilot flame is entrained and oxygen supply is sufficient. In the downstream region, however, combustion reaction can be seen also within clusters of pulverized-coal particles, since the temperature of pulverized-coal particles rises, and the mixing with emitted volatile matter and ambient air is promoted.

모형 가스터빈 연소기의 수치해석적 연구 (Numerical Simulation for Model Gas Turbine Combustor)

  • 김태한;최병륜
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1789-1798
    • /
    • 1994
  • This paper aimed for numerical simulation of complicated gas turbine combustor with swirler. For the convenience of numerical analysis, fuel nozzle and air linear hole areas of secondary and dilution zone, which are issued to jet stream, were simplified to equivalent areas of annular type. In other to solve these problems, imaginary source terms which are corresponded to supplied fuel amount were added to those of governing equation. Chemical equilibrium model of infinite reaction rate and $k-{\epsilon}-g$ model with the consideration of density fluctuation were applied. As the result, swirl intensity contributed to mixing of supplied fuel and air, and to speed up the flame velocity than no swirl condition. Temperature profiles were higher than experimental results at the upstream and lower at the downstream, but total energy balance was accomplished. As these properties showed the similar trend qualitatively, simplified simulation method was worth to apply to complicated combustor for predicting combustion characteristics.

제주도 동부해안 한동리지역의 수문지질학적 연구

  • 김기표;윤정수;박원배
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.9-12
    • /
    • 2002
  • The purpose of this study is to understand the high saline water phenomenon of Handong-ri area in the eastern coast of Jeju Island, were investigate the tidal effect of groundwater level, variation of electric conductivity and temperature, geological logging on the monitoring wells, chemical water quality, and ratios of oxygen istope of groundwater and seawater Results in investigating variation of interface zone of freshwater and saline water represented that the hyaloclastites formed at below groundwater table is developing toward the coast; this area consisted of stratum of good permeability. Hyaloclastites is presumed the main path of the high salinity water There are a lot of movement by the tide at upper layer. Salinity of lower layer spreads to upper up step in proportion to tidal energy. Because of hydrogeological characteristics, Interface zone of freshwater and saline water is made, High salinity of groundwater occur in east coastal area of Jeju Island. Therefore, I think that high saline groundwater phenomenon is natural condition by simple mixing.

  • PDF

CHARACTERIZATION OF POOL-RIFFLE SEQUENCES IN SOLUTE TRANSPORT MODELING OF STREAMS

  • Seo, Il-Won;Yu, Dae-young
    • Water Engineering Research
    • /
    • 제1권3호
    • /
    • pp.171-185
    • /
    • 2000
  • A mathematical model to adequately predict complex mixing characteristics of sorptive polluants in natural streams with pools-and-riffes has been developed. In this model, sorption of pollutants onto the bed sediment as well as mass storage and exchange in the storage zones were incorporated into one-dimensional mass balance equatins. The geometric and hydraulic characteristics of the pool-riffle sequences were properly conceptualized. Simulations with parameters of pool-and-riffle streams better fit the measured data in overall shape and peak concentration than simulations with parameters for uniform channels. The analyses on the characteristics of the storage zone model parameters reveal that a linear relationship between the logrithm of the storage zone volume ratio and a function of the friction factor exists. A linear relatiohship might also be tenatively assumed between the logarithm of the dimensionless mass exchange coefficient and the logarithm of the aspect ratio of the storage zone if some of the high values of the dimensionless mass exchange coefficient collected on the successive bed forms are excluded.

  • PDF

First-Order Mass Transfer in a Vortex-Dispersion Zone of an Axisymmetric Groove: Laboratory and Numerical Experiments

  • Kim, Young-Woo;Kang, Ki-Jun
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.651-657
    • /
    • 2010
  • Solute transport through a groove is affected by its vortices. Our laboratory and numerical experiments of dye transport through a single axisymmetric groove reveal evidence of enhanced spreading and mixing by the vortex, i.e., a new kind of dispersion called here the vortex dispersion. The uptake and release of contaminants by vortices in porous media is affected by the flow Reynolds number. The larger the flow Reynolds number, the larger is the vortex dispersion, and the larger is the mass-transfer rate between the mobile zone and the vortex. The long known dependence of the mass-transfer rate between the mobile and "immobile" zones in porous media on flow velocity can be explained by the presence of vortices in the "immobile" zone and their uptake and release of contaminants.