• Title/Summary/Keyword: Mixing methods

Search Result 867, Processing Time 0.024 seconds

A Study on the Mix Design and the Control System of Thermal Crack for High Quality Mass Concrete (고품질 매스콘크리트 시공을 위한 배합설계 및 온도균열제어 시스템에 관한 연구)

  • Kim, Sun-Gu;Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.2
    • /
    • pp.174-178
    • /
    • 2001
  • This study was performed to control the thermal crack of the mat footing slab in the multi-purposed buildings. In this study, we executed the mixing design of concrete to satisfy the workability and the quality according to the site conditions. And, we evaluated quantitatively about the possibility of thermal crack by using hydration heat analysis system. Finally, we proposed the optimal mixing conditions, curing methods and curing period which all factors are considered. As a result, the optimal mixing conditions were : W/B 41%, unit binder 375kgf/$\textrm{m}^3$, FA replacement ratio 20%. Lowest thermal stress was 22.0kgf/$\textrm{cm}^2$ and at that time thermal crack index was over 1.5, when the coefficient of thermal conductivity was lowest among the curing conditions. And, the total curing time was estimated at 6.7 days according to curing steps.

  • PDF

A Note on the Dependence Conditions for Stationary Normal Sequences

  • Choi, Hyemi
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.647-653
    • /
    • 2015
  • Extreme value theory concerns the distributional properties of the maximum of a random sample; subsequently, it has been significantly extended to stationary random sequences satisfying weak dependence restrictions. We focus on distributional mixing condition $D(u_n)$ and the Berman condition based on covariance among weak dependence restrictions. The former is assumed for general stationary sequences and the latter for stationary normal processes; however, both imply the same distributional limit of the maximum of the normal process. In this paper $D(u_n)$ condition is shown weaker than Berman's covariance condition. Examples are given where the Berman condition is satisfied but the distributional mixing is not.

A Study on the Mix Design and the Control of Thermal Crack of Mass Concrete (매스콘크리트의 배합설계 및 온도균열제어에 관한 연구)

  • Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.533-538
    • /
    • 2001
  • This study was peformed to control the thermal crack of the mat footing slab in the multi-purposed buildings. In this study, we executed the mixing design of concrete to satisfy the workability and the quality according to the site conditions. And, we evaluated quantitatively about the possibility of thermal crack by using hydration heat analysis system. Finally, we proposed the optimal mixing conditions, curing methods and curing period which all factors are considered. As a results, the optimal mixing conditions were : W/B 41%, unit binder 375kg/$cm^{2}$, FA replacement ratio 20%. Lowest thermal stress was 22.0kgf/$cm^{2}$ and at that time thermal crack index was over 1.5, when the coefficient of thermal conductivity was lowest among the curing conditions. And, the total curing time was estimated at 6.7 days according to curing steps.

  • PDF

PREDICTING PARAMETERS OF TRANSIENT STORAGE ZONE MODEL FOR RIVER MIXING

  • Cheong, Tae-Sung;Seo, Il-Won
    • Water Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.69-85
    • /
    • 2003
  • Previously developed empirical equations used to calculate the parameters of the transient storage model are analyzed in depth in order to evaluate their behavior in representing solute transport in the natural streams with storage zone. A comparative analysis of the existing theoretical and experimental equations used to predict parameters of the transient storage (TS) model is reported. New simplified equations for predicting 4 key parameters of the TS model using hydraulic data sets that are easily obtained in the natural streams are also developed. The weighted one-step Huber method, which is one of the nonlinear multi-regression methods, is applied to derive new parameters equation. These equations are proven to be superior in explaining mixing characteristics of natural streams with the transient storage zone more precisely than the other existing equations.

  • PDF

Microstructure and Magnetic Properties of Nanostructured Fe-Co Alloy Powders Produced by Chemical Solution Mixing and Hydrogen Reduction Methods (화학용액혼합과 수소환원법으로 제조된 나노 구조 Fe-Co 합금분말의 미세구조 및 자성 특성)

  • 박현우;이백희;이규환;김영도
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.333-336
    • /
    • 2003
  • The purpose of this study is the fabrication of nano-sized Fe-Co alloy powders with soft magnetic properties by the slurry mixing and hydrogen reduction (SMHR) process. $FeCl_2$0 and $CoCl_2$ powders with 99.9% purities were used for synthesizing nanostructured Fe-Co alloy powder. Nano-sized Fe-Co alloy powders were successfully fabricated using SMHR, which was performed at 50$0^{\circ}C$ for 1 h in H$_2$ atmosphere. The fabricated Fe-Co alloy powders showed $\alpha$' phase (ordered body centered cubic) with the average particle size of 45 nm. The SMHR powder exhibited low coercivity force of 32.5 Oe and saturation magnetization of 214 emu/g.

A Study on CFD Simulation of Rotational Flow in Stirred Tanks (교반 탱크 내 회전 유동의 CFD 해석 연구)

  • Cho, Chan-Young;Nam, Jin-Hyun;Shin, Dong-Hoon;Chung, Tae-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1406-1411
    • /
    • 2009
  • Stirred tanks are widely used in various industries for mixing operations and chemical reactions for single- or multi-phase fluid systems. In this study, a numerical study was conducted to predict the mixing characteristics in a simple stirred tank. The flow in the model stirred tank was calculated utilizing the multiple reference frame (MRF) and the sliding mesh (SM) capabilities of a commercial CFD code (Fluent 6.2). The results of the flow simulation were analyzed in terms of the mixing efficiency, and the applicability of MRF and SM methods was also discussed.

  • PDF

Day-Night Differences in Zooplankton Catches in the Coastal Area of Active Tidal Mixing (조류에 의한 혼합이 활발한 연안역에서의 동물 플랑크톤 채집량의 주야 차이)

  • PARK, CHUL
    • 한국해양학회지
    • /
    • v.25 no.3
    • /
    • pp.151-159
    • /
    • 1990
  • For the test of zooplankton's ability to migrate vertically in the coastal area of active tidal mixing, day-night differences in zooplankton catches were examined. Some taxa such as large Copepods, My side, chaetognatha and Bivalve larva showed high abundances at surface layer at night suggesting the presence of vertical migration even in this shallow coastal area of active tidal mixing. Previously used methods of sampling were reviewed to find a proper sampling method in the Korean western coastal area.

  • PDF

ASSESSMENT OF THERMAL FATIGUE IN MIXING TEE BY FSI ANALYSIS

  • Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.99-106
    • /
    • 2013
  • Thermal fatigue is a significant long-term degradation mechanism in nuclear power plants. In particular, as operating plants become older and life time extension activities are initiated, operators and regulators need screening criteria to exclude risks of thermal fatigue and methods to determine significant fatigue relevance. In general, the common thermal fatigue issues are well understood and controlled by plant instrumentation at fatigue susceptible locations. However, incidents indicate that certain piping system Tee connections are susceptible to turbulent temperature mixing effects that cannot be adequately monitored by common thermocouple instrumentations. Therefore, in this study thermal fatigue evaluation of piping system Tee-connections is performed using the fluid-structure interaction (FSI) analysis. From the thermal hydraulic analysis, the temperature distributions are determined and their results are applied to the structural model of the piping system to determine the thermal stress. Using the rain-flow method the fatigue analysis is performed to generate fatigue usage factors. The procedure for improved load thermal fatigue assessment using FSI analysis shown in this study will supply valuable information for establishing a methodology on thermal fatigue.

The Properties of Foamed Concrete Slurry Using Bottom Ash According to the Methods of Mixing of Foam (기포혼입방법에 따른 바텀애쉬를 사용한 기포 콘크리트의 특성)

  • Kang Cheol;Kang Gi Woong;Kawg Eun Gu;Cho Sung Hyun;Kwon Gi Ju;Kim Jin Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.529-532
    • /
    • 2004
  • As the purpose of this study is a research of series to obtain fundamental data on the development of the product of foamed concrete using bottom ash for various applications in the field, the main purpose is the light weight of product of concrete. In this experiment, method of mixing of foam is very important because it control specific gravity and strength of the product. As the test results, it was found that regardless of mixing method the grower the concentration of foaming agent the lower the specific gravity and the compressive strength of the specimen especially pre-foaming method. From a strength point of view, we knew that mix-foaming method and steam curing is efficient to obtain a adequate compressive strength of foamed concrete.

  • PDF