• 제목/요약/키워드: Mixing design

검색결과 1,229건 처리시간 0.029초

사출금형 안에서 코팅을 위한 충돌혼합에 관한 해석 (Analysis of impingement mixing for coating in injection mold)

  • 김슬우;이호상
    • Design & Manufacturing
    • /
    • 제13권4호
    • /
    • pp.1-9
    • /
    • 2019
  • In-mold Coating is a method that can simultaneously perform injection molding and surface coating in injection mold. The material used for coating is two-component polyurethane which is composed of polyol and isocyanate. L-type mixing head can be used to mix polyol and isocyanate uniformly, and inject them inside the mold cavity. The surface quality of the injection molded products by using in-mold coating depends on the mixing uniformity between main agent and hardener. In this study, flow analysis was performed to design a mixing head for uniform mixing of two-component polyurethane. Especially the effects of design parameters of mixing head on mixing uniformity and nozzle pressure were investigated. The parameters of mixing head were mixing chamber diameter, cleaning cylinder diameter, nozzle alignment angle in the horizontal and vertical direction, and cleaning piston position. It was found that optimal design values were mixing chamber diameter of 3.5 mm, cleaning cylinder diameter of 5.0 mm, nozzle horizontal/vertical alignment angles of 140°/160°, and cleaning piston position of 1.8 mm. The optimal values would be used to develop a two-component mixing head achieving an uniform mixing for in-mold coating.

Optimum shape and process design of single rotor equipment for its mixing performance using finite volume method

  • Kim, Nak-Soo;Lee, Jae-Yeol
    • Korea-Australia Rheology Journal
    • /
    • 제21권4호
    • /
    • pp.289-297
    • /
    • 2009
  • We numerically analyzed flow characteristics of the polymer melt in the screw equipment using a proper modeling and investigated design parameters which have influence on the mixing performance as the capability of the screw equipment. We considered the non-Newtonian and non-isothermal flow in a single rotor equipment to investigate the mixing performance with respect to screw dimensions as shape parameter of the single rotor equipment and screw speed as process parameter. We used Bird-Carreau-Yasuda model as a viscous model of the polymer melt and the particle tracking method to investigate the mixing performance in the screw equipment and considered four mixing performance indexes: residence time distribution, deformation rate, total strain and particle standard deviation as a new mixing performance index. We compared these indexes to determine design parameters and object function. On basis of the analysis results, we carried out the optimal design by using the response surface method and design of experiments. In conclusion, the differences of results between the optimal value and numerical analysis are about 5.0%.

개질기 혼합영역 형상에 따른 반응물의 혼합도 및 가스상 반응특성에 대한 수치해석적 연구 (Impact of mixer design to reactants mixing characteristics and gas-phase reactions in the mixing region of a hydrocarbon reformer)

  • 김선영;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.99.1-99.1
    • /
    • 2011
  • Reactant mixing has a critical role in ensuring reformate quality and an important design objective is to achieve sufficiently complete mixture of reactants. For that purpose it is required to understand the coupled transport-kinetics phenomena in the mixing region. Three-dimensional computational fluid dynamics model was developed and validated in previous works. The mixing characteristics in various alternatives of a prototype mixing chamber were compared, and then a reduced reaction kinetics was applied to two extreme designs for investigating the impact of gas-phase reactions. Both designs did not reach threshold ethylene mole fraction of 0.001, but surprisingly more ethylene was generated in the design having better mixing characteristics. The presentation will deliver the development process of coupled transport and kinetics model briefly and the detailed information about the mixing characteristics and gas-phase reactions in two mixer designs.

  • PDF

인몰드 코팅을 위한 이액형 폴리우레탄의 혼합특성에 관한 해석적 연구 (A Study on Mixing Characteristics of Two-component Polyurethane for In-mold Coating)

  • 이호상;김동미
    • 한국정밀공학회지
    • /
    • 제30권3호
    • /
    • pp.317-323
    • /
    • 2013
  • In-mold coating is a reactive fluid designed to improve the surface quality of injection molded thermoplastic substrate in functional and cosmetic properties. In this study, a mixing head for in-mold coating was designed, and mixing characteristics of two-component polyurethane flowing through runner were investigated based on flow simulations. In order to achieve uniform mixing of two components injected through straight mixing head, an impingement aftermixer was used in runner design. Semi-circular cross-section was better than circular one for runners for uniform mixing. With increasing runner length and flow rate, mixing became more uniform. In addition, the degree of mixing was more improved with decreasing viscosity of isocyanate.

혼합기 블레이드 설계변수에 따른 입자의 혼합성능 연구 (Effects of Design Parameters of Mixer Blades on Particle Mixing Performance)

  • 황선필;박상현;손동우
    • 한국전산구조공학회논문집
    • /
    • 제30권4호
    • /
    • pp.363-370
    • /
    • 2017
  • 본 논문에서는 원통형 혼합기를 대상으로 블레이드의 각도, 길이, 개수 및 블레이드와 탱크 바닥과의 간극을 설계변수로 선정하고, 각각의 설계변수가 혼합성능에 미치는 영향을 분석하였다. 이산요소법을 이용하여 임펠러 회전에 의한 고체 입자의 혼합공정을 해석하였으며, 혼합지수를 도입하여 혼합성능을 정량적으로 평가하였다. 다양한 설계변수의 조합을 고려한 실험계획법으로 설계변수의 주효과와 교호작용을 분석함으로써, 블레이드 각도가 입자의 혼합성능에 가장 지배적인 영향을 미치며 간극의 영향은 상대적으로 작다는 결론을 도출할 수 있었다. 또한 가장 우수한 혼합성능을 보이는 설계변수의 조합을 제시하였다.

혼합 개선을 위한 Y-채널 마이크로 믹서의 최적설계 (Optimum Design of a Y-channel Microcmixer for Enhanced Mixing)

  • 신용수;최형일;이동호;이도형
    • 대한기계학회논문집A
    • /
    • 제30권3호
    • /
    • pp.302-309
    • /
    • 2006
  • Effective mixing plays a crucial role in microfluidics for biochemical applications. Owing to the small device scale and its entailing the low Reynolds number, the mixing in microchannels proceeds very slowly. In this work, we optimize the configuration of obstacles in the Y-channel mixer in order to attain maximum mixing efficiency. Before the optimum design, mixing characteristics are investigated using unstructured grid CFD method. Then, the analysis method is employed to construct the approximate analysis model to be used in the optimization procedure. The main optimization tool in the present work is sequential quadratic programming method. Using this approximate optimization procedure, we may obtain the optimum layout of obstacles in the Y-channel mixer in an efficient manner, which gives the maximum mixing efficiency.

Design and Simulation of White Color Mixing Lens for Backlight Unit

  • Hwang, Sung-Kyung;Lim, Mee-Hyun;Han, Hae-Wook;Cho, Min-Su;Lee, Jae-Ho;Jang, Kyeng-Kun;Kang, Sin-Ho;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.229-230
    • /
    • 2009
  • This paper proposes a new design of ultra-slim color mixing lens (CML) for backlight unit (BLU), and presents simulated performance of the design. The novel color mixing structure has a shorter mixing length (< 1cm) than the existing color mixing structure, and achieves high efficiency and uniformity.

  • PDF

혼합성능 개선을 위한 분리 삼중충돌 요소의 설계 (Design of Unlike Split Triplet Impinging Element for Jet Mixing)

  • 조용호;김경호;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.225-232
    • /
    • 2003
  • 분리 삼중충돌 제트의 액상 혼합에 대한 실험적 연구결과를 통해 분리 삼중충돌 인젝터의 요소설계시 고려해야 할 기하학적 파라메타와 혼합성능을 고려하는 방법을 제시하였다. 실험은 비반응성인 케로신과 물을 사용하여 수행하였으며, 분사공의 기학적 조건과 분사조건(운동량비)에 따른 국소혼합비 분포를 측정하여 혼합효율 및 혼합특성속도를 산출하였다. 분사공의 각종 기하학적 요소와 운동량비에 따른 혼합효율 및 혼합 특성속도를 비교/분석하고 혼합성능과 연소성능과의 상관관계를 규명하였으며, 혼합의 정도를 향상시키는 설계점과 혼합성능 측면에서의 분리 삼중충돌 인젝터의 최적 설계조건에 대하여 고찰하였다.

  • PDF

능동형 미소혼합기의 근사최적화 (Approximate Optimization of an Active Micro-Mixer)

  • 박재용;김상락;유진식;임민규;김용대;한석영;맹주성
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.95-100
    • /
    • 2008
  • An active micro-mixer, which is composed of an oscillating micro-stirrer in the micro-channel to provide effective mixing was optimized. The effects of molecular diffusion and disturbance by the stirrer were considered with regard to two types of mixer models: the simple straight micro-channel and micro-channel with an oscillating stirrer. Two types of mixer models were studied by analyzing mixing behaviors such as their interaction after the stirrer. The mixing was calculated by Lattice Boltzmann methods using the D2Q9 model. In this study, the time-averaged mixing index formula was used to estimate the mixing performance of time-dependent flow. The mixing indices of the two models were compared. From the results, it was found that the mixer with an oscillating stirrer was much more enhanced and stabilized. Therefore, an approximate optimization of an active micro-mixer with an oscillating stirrer was performed using Kriging method with OLHD(Optimal Latin Hypercube Design) in order to determine the optimal design variables. The design parameters were established as the frequency, the length and the angle of the stirrer. The optimal values were obtained as 1.0346, 0.66D and $\pm45^{\circ}$, respectively. It was found that the mixing index of the optimal design increased by 88.72% compared with that of the original design.

혼합 효율 향상을 위한 마이크로 동적 믹서의 형상최적화 (Shape Optimization of an Active Micro-Mixer for Improving Mixing Efficiency)

  • 박재용;김상락;이원구;유진식;김용대;맹주성;한석영
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.146-152
    • /
    • 2007
  • An active micro-mixer, which was composed of an oscillating micro-stirrer in the microchannel to provide rapid, effective mixing at high flow, rates was analyzed. The effects of molecular diffusion and disturbance by the stirrer were considered with regard to two types of mixer models: the simple straight microchannel and microchannel with an oscillating stirrer. Two types of mixer models were studied by analyzing mixing behaviors such as their interaction after the stirrer. The mixing was calculated by Lattice Boltzmann methods using the D2Q9 model. In this study, the time-averaged mixing index formula was used to estimate the mixing performance of time-dependent flow. The mixing indices of the two models compared. From the results, it was found that the mixer with an oscillating stirrer was much more enhanced and stabilized. Therefore, an optimum design for a dynamic micro-mixer with an oscillating stirrer was performed using Taguchi method in order to obtain a robust solution. The design parameters were established as the frequency, the length and the angle of the stirrer and the optimal values were determined to be 2, 0.8D and ${\pm}75^{\circ}$, respectively. It was found that the mixing index of the optimal design increased 80.72% compared with that of the original design.