• Title/Summary/Keyword: Mixing approach

Search Result 239, Processing Time 0.027 seconds

Investigation on Fire Resistance of High-Performance Cement Motar with Recycled Fine Aggregate Mixed by Two-Stage Mixing Approach (2단계 배합을 사용한 순환잔골재 혼입 고성능 시멘트 모르타르의 내화성능 연구)

  • Park, Sung-Hwan;Choi, Jun-Ho;Lee, Chi Young;Koo, Min-Sung;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • This study was conducted to confirm the applicability of recycled aggregates as aggregates for structural concrete as a way to respond to the shortage of natural aggregates. The two-stage mixing approach developed by Tam et al. is known to be a method that can improve the mechanical performance of recycled aggregate concrete without the installation of new additional facilities. In this work, modified version of two stage mixing approach, which was used in our earlier work, was introduced to prepare mortar specimens with recycled fine aggregate, and the compressive strength and fire resistance were compared to mortar mixed with normal mixing approach. According to the experimental results from mortar with recycled fine aggregate, the use of two-stage mixing approach was found to be more effective than normal mixing approach for compressive strength development. In addition, the residual strengths of the mortar with two-stage mixing approach was higher than mortar made of normal mixing approach after exposure to 600 and 900 ℃. It is possible to manufacture high-performance cement composites with recycled fine aggregates through the active use of the two-stage mixing approach.

Sustainable self compacting acid and sulphate resistance RAC by two stage mixing approaches

  • Rajhans, Puja;Kisku, Nishikant;Nayak, Sanket;Panda, Sarat Kumar
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.55-70
    • /
    • 2020
  • In this research article, acid resistance, sulphate resistance and sorptivity of self compacted concrete (SCC) prepared from C&D waste have been discussed. To improve the above properties of self compacted recycled aggregate concrete (SCRAC) along with mechanical and durability properties, different two stage mixing approaches (TSMA and TSMAsfc) were followed. In the proposed two stage mixing approach (TSMAsfc), silica fume, a proportional amount of cement and a proportional amount of water were mixed in premix stage which fills the pores and cracks of recycled aggregate concrete (RAC). The concrete specimen prepared using above mixing approaches were immersed in 1% concentration of sulphuric acid (H2SO4) and magnesium sulphate (MgSO4) solution for 28, 90 and 180 days for evaluating the acid resistance of SCRAC. Experimental results concluded that the proposed two stage mixing approach (TSMAsfc) is most suitable for acid resistance and sulphate resistance in terms of weight loss and strength loss due to the elimination of pores and cracks in the interfacial transition zone (ITZ). In modified two stage mixing approach, the pores and cracks of recycled concrete aggregate (RCA) were filled up and make ITZs of SCRAC stronger. Microstructure analysis was carried out to justify the reason of improvement of ITZs by electron probe micro analyser (EPMA) analysis. X-ray mapping was also done to know the presence of strength contributing elements presents in the concrete sample. It was established that SCRAC with modified mixing approach have shown improved results in terms of acid resistance, sulphate resistance, sorptivity and mechanical properties.

Bulk-Type Cloud Microphysics Parameterization in Atmospheric Models (대기 모형에서의 벌크형 미세구름물리 모수화 방안)

  • Lim, Kyo-Sun Sunny
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.227-239
    • /
    • 2019
  • This paper reviews various bulk-type cloud microphysics parameterizations (BCMPs). BCMP, predicting the moments of size distribution of hydrometeors, parameterizes the grid-resolved cloud and precipitation processes in atmospheric models. The generalized gamma distribution is mainly applied to represent the hydrometeors size distribution in BCMPs. BCMP can be divided in three different methods such as single-moment, double-moment, and triple-moment approaches depending on the number of prognostic variables. Single-moment approach only predicts the hydrometeors mixing ratio. Double-moment approach predicts not only the hydrometeors mixing ratio but also the hydrometeors number concentration. Triple-moment approach predicts the dispersion parameter of hydrometeors size distribution through the prognostic reflectivity, together with the number concentrations and mixing ratios of hydrometeors. Triple-moment approach is the most time expensive method because it has the most number of prognostic variables. However, this approach can allow more flexibility in representing hydrometeors size distribution relative to single-moment and double-moment approaches. At the early stage of the development of BMCPs, warm rain processes were only included. Ice-phase categories such as cloud ice, snow, graupel, and hail were included in BCMPs with prescribed properties for densities and sedimentation velocities of ice-phase hydrometeors since 1980s. Recently, to avoid fixed properties for ice-phase hydrometeors and ad-hoc category conversion, the new approach was proposed in which rimed ice and deposition ice mixing ratios are predicted with total ice number concentration and volume.

Approach of Self-mixing Interferometry Based on Particle Swarm Optimization for Absolute Distance Estimation

  • Li, Li;Li, Xingfei;Kou, Ke;Wu, Tengfei
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.95-101
    • /
    • 2015
  • To accurately extract absolute distance information from a self-mixing interferometry (SMI) signal, in this paper we propose an approach based on a particle swarm optimization (PSO) algorithm instead of frequency estimation for absolute distance. The algorithm is utilized to search for the global minimum of the fitness function that is established from the self-mixing signal to find out the actual distance. A resolution superior to $25{\mu}m$ in the range from 3 to 20 cm is obtained by experimental measurement, and the results demonstrate the superiority of the proposed approach in comparison with interpolated FFT. The influence of different external feedback strength parameters and different inertia weights in the algorithm is discussed as well.

Modeling of Turbulent Molecular Mixing by the PDF Balance Method for Turbulent Reactive Flows (난류연소 유동장에서의 확률밀도함수 전달방정식을 이용한 난류혼합 모델링)

  • Moon, Hee-Jang
    • Journal of the Korean Society of Combustion
    • /
    • v.2 no.1
    • /
    • pp.39-51
    • /
    • 1997
  • A review of probability density function(PDF) methodology and direct numerical simulation for the purpose of modeling turbulent combustion are presented in this study where particular attention is focused on the modeling problem of turbulent molecular mixing term appearing in PDF transport equation. Existing mixing models results were compared to those evaluated by direct numerical simulation in a turbulent premixed medium with finite rate chemistry in which the initial scalar field is composed of pockets of partially burnt gases to simulate autoignition. Two traditional mixing models, the least mean square estimations(LMSE) and Curl#s model are examined to see their prediction capability as well as their modeling approach. Test calculations report that the stochastically based Curl#s approach, though qualitatively demonstrates some unphysical behaviors, predicts scalar evolutions which are found to be in good agreement with statistical data of direct numerical simulation.

  • PDF

Analysis for Scalar Mixing Characteristics using Linear Eddy Model (Linear Eddy Model을 이용한 스칼라의 혼합특성 해석)

  • Kim, Hoo-Joong;Kim, Yong-Mo;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.133-137
    • /
    • 2004
  • The present study is focused on the small scale turbulent mixing processes in the scalar field. In order to deal with molecular mixing in turbulent flow, the linear eddy model is addressed. In each realization, the molecular mixing term is implemented deterministically, and turbulent stirring is represented by a sequence of instantaneous, statistically independent rearrangement event called by triplet map. The LEM approach is applied with relatively simple conditions. The characteristics of scalar mixing and PDF profiles are addressed in detail.

  • PDF

Mechanical Properties of Recycled Coarse Aggregate concrete using Two-Stage Mixing Approach (TSMA 방법을 이용한 순환 굵은골재 콘크리트의 기계적 성능)

  • Kwon, Seung Jun;Lim, Hee Seob;Lee, Han Seung;Lim, Myung Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.60-67
    • /
    • 2018
  • As the lack of specific aggregation intensifies, the development of alternative resources is urgent. Construction waste is increasing every year, but recycled aggregate is used as a low value added material. Various studies are currently underway at the national level. In this paper, the mechanical performance of the concrete according to the concrete mixing method and the replacement amount of the circulating coarse aggregate was compared and evaluated. Concrete mixing method was normal mixing approach(NMA) method, two-stage mixing approach1 (TSMA1) method, two-stage mixing approach2 (TSMA2) method. Fresh concrete was tested for air content, slump test, and unit volume weight. Compressive strength and flexural strength were tested in hardened concrete. According to the TSMA method, the mechanical performance difference of concrete is shown, and the strength is decreased according to the circulating coarse aggregate replacement amount.

Contribution of Two-Stage Mixing Approach on Compressive Strength of Mortar Made of Recycled Fine Aggregate (2단계 배합방법이 순환잔골재 혼입 모르타르의 압축강도에 미치는 영향)

  • Kim, Yu-Jin;Kim, Gyu-Won;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.490-497
    • /
    • 2020
  • This work has been initiated to find possibility whether recycled fine aggregate can be used as a source of aggregate for structural concrete or not. Two-stage mixing approach was chosen in order to maximize strength potential from recycled fine aggregate. Moisture content of the recycled fine aggregate was changed, and two different types of two-stage mixing approaches were applied to produce cement mortar. The strength of mortar made of 100% recycled fine aggregate by two-stage mixing approaches was compared to that of mortar made of 100% washed sea sand. According to the results, the effect of moisture content on compressive strength was observed from low water cement mortar(W/C 0.3). In case of W/C 0.5 cement mortar, no clear relationship was observed between moisture content and strength development. It was found that two-stage mixing approach has a potential to increase the strength of mortar made of 100% recycled fine aggregate. In case of modified version of two-stage mixing approach which first prepares cement paste and pours recycled fine aggregate into the cement paste, was more effective to increase the strength of mortar made of 100% recycled fine aggregate.

CHAOTIC MIXING IN THREE-DIMENSIONAL MICRO CHANNEL (삼차원 마이크로 채널 내 카오스 혼합)

  • Le, T.H.V.;Kang, S.;Suh, Y.K.;Wang, Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.49-55
    • /
    • 2007
  • The quality of chaotic mixing in three-dimensional micro channel flow has been numerically studied using Fractional-step method (FSM) and particle tracking techniques such as $Poincar{\acute{e}}$ section and Lyapunov exponents. The flow was driven by pressure distribution and the chaotic mixing was generated by applying alternating current to electrodes embedded on the bottom wall at a first half period and on the top wall at a second half period. The equations governing the velocity and concentration distributions were solved using FSM based on Finite Volume approach. Results showed that the mixing quality depended significantly on the modulation period. The modulation period for the best mixing performance was determined based on the mixing index for various initial conditions of concentration distribution. The optimal values of modulation period obtained by the particle tracking techniques were compared with those from the solution of concentration distribution equation using FSM and CFX software and the comparison showed their good match.

  • PDF

Multistep Quantum Master Equation Theory for Response Functions in Four Wave Mixing Electronic Spectroscopy of Multichromophoric Macromolecules

  • Jang, Seog-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.997-1008
    • /
    • 2012
  • This work provides an alternative derivation of third order response functions in four wave mixing spectroscopy of multichromophoric macromolecular systems considering only single exciton states. For the case of harmonic oscillator bath linearly and diagonally coupled to exciton states, closed form expressions showing all the explicit time dependences are derived. These expressions can provide more solid physical basis for understanding 2-dimensional electronic spectroscopy signals. For more general cases of system-bath coupling, the quantum master equation (QME) approach is employed for the derivation of multistep time evolution equations for Green function-like operators. Solution of these equations is feasible at the level of 2nd order non-Markovian QME, and the new approach can account for inter-exciton coupling, dephasing, relaxation, and non-Markovian effects in a consistent manner.