• Title/Summary/Keyword: Mixing Machine

Search Result 126, Processing Time 0.026 seconds

Study on the Mixing Behavior of Excavated Soils and Additives in the Mixing Chamber of Excavated Soil-Recycling Machine

  • Takahashi, Hiroshi;Yamanaka, Hayato;Sekino, Satoshi;Hashimoto, Hisayoshi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.97-101
    • /
    • 2001
  • Recently, an excavated soil-recycling machine has been receiving considerable attentions. The mobile type excavated soil-recycling machine is able to improve the soils by adding the additives such as slaked lime and cement at the construction site. However, not only the mechanical factors such as paddle inclination angle and pitch of the paddle but also the physical properties of the excavated soils affect the mixing performance of the excavated soils and additives. In this sense, experimental investigations are uneconomical and ineffective. This paper concerns with the numerical simulator to analyze the mixing behavior of excavated soils and additives in the soil-recycling machine with dual shafts in order to assist the economical and effective design of the optimum soil-recycling machine. By using the simulator, several simulations were carried out, and the effects of some mechanical parameters such as the paddle inclination angle and pitch of the paddle on the mixing performance were made clear.

  • PDF

Vibration Analysis of Shaft with Impeller for Resin Chock Mixing Machine (Resin Chock 교반기용 임펠러가 달린 축의 진동해석)

  • Hong, Do-Kwan;Park, Jin-Woo;Baek, Hwang-Soon;Ahn, Chan-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.970-977
    • /
    • 2008
  • This paper deals with the dynamic characteristics of the shaft with impeller model which is the most important part in developing the resin mixing machine. Through reverse engineering, it is possible to make the shaft with impeller geometry model which is necessary vibration characteristic analysis by commercial impeller. The natural frequency analysis and structural analysis using finite element analysis software are performed on the imported commercial shaft with impeller model. The most important fundamental natural frequency of the shaft with impeller model is around 14.5 Hz, which well agrees with modal testing. The most effective design variables were extracted by ANOM(analysis of means) and pareto chart. This paper presents approximation 2nd order polynomial as design variables using RSM(response surface methodology). Generally, RSM take 2 or 3 design variables, but this method uses 5 design variables with table of mixed orthogonal array. Further more, the analyzed result of the commercial shaft with impeller is to be utilized for the structural design of resin chock mixing machine.

Vibration Characteristics of Impeller Shaft for Mixing Machine According to the Positions of a Bearing Support (교반기용 임펠러가 달린 축의 베어링 지지점에 따른 진동특성)

  • Hong, Do-Kwan;Ahn, Chan-Woo;Baek, Hwang-Soon;Choi, Seok-Chang;Park, Il-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.68-73
    • /
    • 2009
  • This paper deals with the dynamic characteristics of the impeller shaft model which is the most important part in developing the resin mixing machine. The can is rotating by air motor in mixing machine. Then the end of shaft is fixed. The bearing support is to increase the fundamental natural frequency. The natural frequency analysis using finite element analysis software are performed on the imported commercial impeller shaft model. This paper presents calculated bearing stiffness of Soda, Harris and modified Harris formula considering contact angle according to bearing supported position. The most important fundamental natural frequency of the impeller shaft except bearing support is around 13.932 Hz. This paper presents one bearing and two bearings support position to maximize the 1st natural frequency. The maximized fundamental natural frequency is around 48.843 Hz in one bearing support and 55.52 Hz in two bearings support.

  • PDF

Improvement of a Rice Seed Pelleting Machine for Direct Seeding in Rice Cultivation(II) - Physical and cultural properties of the rice-seed pellets - (직파용 벼 펠렛종자 제조장치 개선 연구(II) - 펠렛종자의 물리적 특성과 재배특성 -)

  • 유대성;유수남;최영수
    • Journal of Biosystems Engineering
    • /
    • v.28 no.5
    • /
    • pp.411-420
    • /
    • 2003
  • Physical and cultural properties were investigated on the rice-seed pellets made by the pelleting machine(Yu, 2003) as the changes with mixing ratios of soil to rice seed of 6 : 1, 7 : 1, and 8 : I, and rotating speeds of forming rolls of 7, 10, and 13 rpm. Average weight, average diameter, and average sphericity of the pellets were 1.70 g, 12.0 ㎜, and 99.1 %, respectively. Average number of seeds per pellet was more than 3, and almost all pellets had more than 3 seeds in the cases of mixing ratios of 6 : 1, and 7 : 1 at the forming rolls' speed of 7 rpm. Gradual drying was needed because rapid drying caused cracks on surface of the pellets. Compression strength of the pellets dried in shady room was in the range of 132 ∼ 152 N, which was enough for handling. Comparing with the previous pellets(Park, 2002), average number of seeds per pellet, ratio of pellets including more than 3 seeds, and compression strength increased due to the effects of pressure feed of pellet materials, and improvements of the forming rolls. Emergence ratio of the pellets made at the mixing ratio of 6 : 1 and the forming rolls' speed of 7 rpm, was 100 % on dry paddy and was 97 % on flooded paddy surface. Good growth characteristics, and yield except number of seedling stand and ratio of missing plant were shown in planting of the pellets made at the mixing ratio of 7 : 1 and the forming rolls' speed of 7 rpm on flooded paddy surface field. Considering the cultural results, the mixing ratio of 6 : 1, and the forming rolls' speed of 7 rpm seems to be optimum operating condition for the improved pelleting machine.

COMPARISON OF THE ACCURACY OF STONE CASTS MADE FROM ALGINATE IMPRESSION MATERIAL BY MIXING METHODS AND APPLICATION OF TRAY ADHESIVE (알지네이트 인상재의 혼합방법과 트레이 어드헤시브 도포에 따른 모형의 정확도 비교)

  • Kim Jin-Hyung;Chung Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.5
    • /
    • pp.492-501
    • /
    • 2001
  • The use of alginate impression materials today is prevalent because of its efficiency and simplicity in clinical settings. Unfortunately, the simplicity of the procedure tends to lull the dentist into a sense of well-being, and lead him into using careless or sloppy technique. Alginate impression materials are used to fabricate diagnostic and preliminary casts, and the final cast. Incorrect use of this material is known to affect the accuracy of the final prosthesis. The purpose of this study was to compare the effect of different mixing methods of alginate impression material and tray adhesive on the accuracy of the stone cast produced by each method. A total of 30 stone casts were produced by using 3 different types of mixing methods (10 stone cast for each mixing method, respectively). The first method utilized an automatic-mixing machine to mix alginate while the second method was carried out manually, strictly following manufacturer's instructions. The third method also involved manual mixing, but did not follow the manufacturer's instructions and was done in a random fashion. Also, 20 additional stone casts were produced by using alginate with or without tray adhesives were included in the study to evaluate effects of tray adhesives on the accuracy of alginate impression. 10 stone casts were produced by adding tray adhesives to the interior surface of the impression tray prior to taking the impression. The other 10 excluded this step. A total of 50 stone casts were analyzed by the three-dimensional measuring machine to measure and compare the dimensional changes of the impression material of each group. The results are as follows. 1. No significant difference was found between the automatic mixing group and the manually-mixing group(p>0.05). 2. For the group that followed manufacturer's instructions, less dimensional changes were record ed than the group that didn't in measuring distanced 4(p<0.05). 3. The group that used tray adhesives showed less dimensional changes(p<0.05). The findings revealed that mechanical methods of mixing alginate impression materials had little influence on dimensional changes. However, it is proven that following manufacturers instructions in alginate impression taking is an important step in acquiring accurate impressions and tray adhesives may play an important role in enhancing the results.

  • PDF

Genetic Algorithms for Tire Mixing Process Scheduling (타이어 정련 공정 스케줄링을 위한 유전자 알고리즘)

  • Ahn, Euikoog;Park, Sang Chul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.2
    • /
    • pp.129-137
    • /
    • 2013
  • This paper proposed the scheduling method for tire mixing processes using the genetic algorithm. The characteristics of tire mixing process have the manufacturing routing, operation machine and operation time by compound types. Therefore, the production scheduling has to consider characteristics of the tire mixing process. For the reflection of the characteristics, we reviewed tire mixing processes. Also, this paper introduces the genetic algorithm using the crossover and elitist preserving selection strategy. Fitness is measured by the makespan. The proposed genetic algorithm has been implemented and tested with two examples. Experimental results showed that the proposed algorithm is superior to conventional heuristic algorithm.

Machine Learning Algorithm Accuracy for Code-Switching Analytics in Detecting Mood

  • Latib, Latifah Abd;Subramaniam, Hema;Ramli, Siti Khadijah;Ali, Affezah;Yulia, Astri;Shahdan, Tengku Shahrom Tengku;Zulkefly, Nor Sheereen
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.334-342
    • /
    • 2022
  • Nowadays, as we can notice on social media, most users choose to use more than one language in their online postings. Thus, social media analytics needs reviewing as code-switching analytics instead of traditional analytics. This paper aims to present evidence comparable to the accuracy of code-switching analytics techniques in analysing the mood state of social media users. We conducted a systematic literature review (SLR) to study the social media analytics that examined the effectiveness of code-switching analytics techniques. One primary question and three sub-questions have been raised for this purpose. The study investigates the computational models used to detect and measures emotional well-being. The study primarily focuses on online postings text, including the extended text analysis, analysing and predicting using past experiences, and classifying the mood upon analysis. We used thirty-two (32) papers for our evidence synthesis and identified four main task classifications that can be used potentially in code-switching analytics. The tasks include determining analytics algorithms, classification techniques, mood classes, and analytics flow. Results showed that CNN-BiLSTM was the machine learning algorithm that affected code-switching analytics accuracy the most with 83.21%. In addition, the analytics accuracy when using the code-mixing emotion corpus could enhance by about 20% compared to when performing with one language. Our meta-analyses showed that code-mixing emotion corpus was effective in improving the mood analytics accuracy level. This SLR result has pointed to two apparent gaps in the research field: i) lack of studies that focus on Malay-English code-mixing analytics and ii) lack of studies investigating various mood classes via the code-mixing approach.

Change of Paper's Physical and Fracture Mechanical Properties Depending on Fibers Properties (섬유 특성에 따른 종이의 물리적, 파괴 역학적 특성 변화)

  • 이진호;박종문
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.3
    • /
    • pp.37-42
    • /
    • 2003
  • Physical properties of paper can be explained in terms of the changes in fiber's morphological properties. As the paper machine speed increases, the basis weight decreases and the mixing ratio of inferior recycled fibers increases, paper break becomes important than ever before. One of the objectives of this study is to analyze paper's physical, mechanical and fracture mechanical properties depending on softwood(SW) and hardwood(HW) mixing ratios and recycling. Fibers were refined by Valley beater to 450 mL CSF. Handsheets of 30 g/$\textrm{m}^2$ were prepared at different mixing ratios. Fracture toughness was measured as the amount of energy applied to cracked sample before total failure. Fracture toughness showed different trend to other strength properties. At the mixing ratio of SW 80: HW 20, papers showed the maximum fracture toughness. At this mixing ratio, flexible softwood fibers were mostly broken and stiff hardwood fibers were mostly pulled out.

Development of a Material Mixing Method using ESO (진화적 구조 최적화를 이용한 재료 혼합법의 개발)

  • 한석영;이수경;신민석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.259-264
    • /
    • 2003
  • This paper suggests a material mixing method to mix several materials in a structure. This method is based on ESO(Evolutionary Structural Optimization), which has been used to optimize topology of only one material structure. In this study, two criterions for material transformation and element removal are implemented for mixing several materials in a structure. Optimal topology for a multiple material structure can be obtained through repetitive application of the two criterions at each iteration. Two practical design examples of a short cantilever are presented to illustrate validity of the suggested material mixing method. It is found that the suggested method works very well and a multiple material structure has more stiffness than one material structure has under the same mass.

  • PDF

Development of a Rice Seed Pelleting Machine for Direct Seeding in Rice Cultivation (직파용 벼 펠렛종자 제조장치 개발)

  • 박종수;유수남;최영수;유대성
    • Journal of Biosystems Engineering
    • /
    • v.27 no.5
    • /
    • pp.381-390
    • /
    • 2002
  • Direct seeding of rice-seed pellets is expected to be an alternative for solving problems in current direct seeding cultivation of rice. but mass production of rice-seed pellets is prerequisite for practical application. Design. construction and performance evaluation of an experimental rice seed pelleting machine were carried out for mass production of rice-seed pellets. The pelleting machine intended to make a ball type rice-seed pellet, which have 3∼5 rice seeds and diameter of which is 12 mm. Pellet materials ; rice seeds, soil, and binder were mixed and kneaded by the mixer. The designed rice seed pelleting machine fed pellet materials by screw conveyor to forming rolls and made rice-seed pellets. Capacity, ratio of perfect rice-seed pellets, seed and pellet material loss were investigated as mixing ratio of soil to rice seed and feeding rate of pellet materials. The pelleting machine showed up to 37,000 pellets/h of pelleting rate, 61∼71% of weight ratio of perfect rice-seed pellets to pellet materials supplied, 17∼48% of seed loss ratio. Average weight and average diameter of the pellets were 1.66 g and 12.0 mm. respectively. More than 3 rice seeds were included in most pellets at 6 : 1 of mixing ratio of soil to rice seed. And compression strength of the pellets was in the range of 88-130 N. To improve performance of the pelleting machine, improvements of the forming rolls, feeding mechanism, and discharging mechanism for reducing loss of pellet materials and seeds damage are needed.